Bibliography
[1]
Ada
Developers, “Ada Reference Manual, 2022
Edition,” 2022. Available: https://www.adaic.org/resources/add_content/standards/22rm/html/RM-TTL.html
[2]
M.
Zalewski, “American fuzzy lop.” Available: https://lcamtuf.coredump.cx/afl/
[3]
M.
Heuse, H. Eißfeldt, A. Fioraldi, and D. Maier,
“AFL++.” Jan. 2022. Available: https://github.com/AFLplusplus/AFLplusplus
[4]
Astral, “Astral-sh/uv.” Astral,
Jul. 18, 2025. Available: https://github.com/astral-sh/uv
[5]
Astral, “Astral-sh/ruff.” Astral,
Jul. 18, 2025. Available: https://github.com/astral-sh/ruff
[6]
Google, “Google/atheris.” Google,
Apr. 09, 2025. Available: https://github.com/google/atheris
[7]
T.
Avgerinos et al., “The mayhem cyber reasoning
system,” IEEE Security & Privacy, vol. 16, no. 2,
pp. 52–60, 2018.
[8]
F.
Bacon, Of the Proficience and Advancement
of Learning... Edited by the Rev.
GW Kitchin. Bell & Daldy, 1861.
[9]
D.
Bahdanau, K. Cho, and Y. Bengio, “Neural Machine
Translation by Jointly Learning to
Align and Translate,” May 19, 2016.
doi: 10.48550/arXiv.1409.0473.
Available: http://arxiv.org/abs/1409.0473
[10]
GNU Project, “Bash - GNU
Project - Free Software Foundation.”
Available: https://www.gnu.org/software/bash/
[11]
F.
Bellard, P. Maydell, and QEMU Team, “QEMU.”
May 29, 2025. Available: https://www.qemu.org/
[12]
G.
Black, V. Mathew Vaidyan, and G. Comert, “Evaluating Large
Language Models for Enhanced Fuzzing: An
Analysis Framework for LLM-Driven Seed
Generation,” IEEE Access, vol. 12, pp.
156065–156081, 2024, doi: 10.1109/ACCESS.2024.3484947.
Available: https://ieeexplore.ieee.org/abstract/document/10731701
[13]
F.
Both, “Why we no longer use LangChain for building
our AI agents,” 2024. Available: https://octomind.dev/blog/why-we-no-longer-use-langchain-for-building-our-ai-agents
[14]
T.
B. Brown et al., “Language Models are
Few-Shot Learners,” Jul. 22, 2020. doi: 10.48550/arXiv.2005.14165.
Available: http://arxiv.org/abs/2005.14165
[15]
A.
Cedilnik, B. Hoffman, B. King, K. Martin, and A. Neundorf,
“CMake - Upgrade Your Software Build
System.” 2000. Available: https://cmake.org/
[16]
S.
K. Cha, T. Avgerinos, A. Rebert, and D. Brumley, “Unleashing
mayhem on binary code,” in 2012 IEEE symposium
on security and privacy, IEEE, 2012, pp. 380–394.
[17]
J.
Wei et al., “Chain-of-Thought Prompting Elicits
Reasoning in Large Language Models,” Jan. 10,
2023. doi: 10.48550/arXiv.2201.11903.
Available: http://arxiv.org/abs/2201.11903
[18]
OpenAI, “ChatGPT,”
2025. Available: https://chatgpt.com
[19]
M.
Chen et al., “Evaluating Large Language Models
Trained on Code,” Jul. 14, 2021. doi: 10.48550/arXiv.2107.03374.
Available: http://arxiv.org/abs/2107.03374
[20]
Anthropic, “Claude,” 2025.
Available: https://claude.ai/new
[21]
Clibs Project, “Clibs/clib.”
clibs, Jul. 01, 2025. Available: https://github.com/clibs/clib
[22]
Clibs Project, “Clib
Packages,” 2025. Available: https://github.com/clibs/clib/wiki/Packages
[23]
Google, “Google/clusterfuzz.”
Google, Apr. 09, 2025. Available: https://github.com/google/clusterfuzz
[24]
A.
Cortesi, M. Hils, and T. Kriechbaumer, “Mitmproxy/pdoc.”
mitmproxy, Jul. 18, 2025. Available: https://github.com/mitmproxy/pdoc
[25]
Anysphere, “Cursor - The AI Code
Editor,” 2025. Available: https://cursor.com/
[26]
DeepSeek-AI et al.,
“DeepSeek-R1: Incentivizing Reasoning
Capability in LLMs via Reinforcement
Learning,” Jan. 22, 2025. doi: 10.48550/arXiv.2501.12948.
Available: http://arxiv.org/abs/2501.12948
[27]
J.
Devlin, M.-W. Chang, K. Lee, and K. Toutanova, “BERT:
Pre-training of Deep Bidirectional
Transformers for Language Understanding,” May
24, 2019. doi: 10.48550/arXiv.1810.04805.
Available: http://arxiv.org/abs/1810.04805
[28]
O.
Khattab et al., “DSPy: Compiling
Declarative Language Model Calls into Self-Improving
Pipelines,” Oct. 05, 2023. doi: 10.48550/arXiv.2310.03714.
Available: http://arxiv.org/abs/2310.03714
[29]
M.
Douze et al., “The Faiss library,”
Feb. 11, 2025. doi: 10.48550/arXiv.2401.08281.
Available: http://arxiv.org/abs/2401.08281
[30]
S.
I. Feldman, “Make — a program for maintaining computer
programs,” Software: Practice and Experience, vol. 9,
no. 4, pp. 255–265, 1979, doi: 10.1002/spe.4380090402.
Available: https://onlinelibrary.wiley.com/doi/abs/10.1002/spe.4380090402
[31]
D.
A. Wheeler, “Flawfinder Home Page.” Available:
https://dwheeler.com/flawfinder/
[32]
O.
I. Franksen, “Babbage and cryptography. Or, the
mystery of Admiral Beaufort’s cipher,”
Mathematics and Computers in Simulation, vol. 35, no. 4, pp.
327–367, 1993, Available: https://www.sciencedirect.com/science/article/pii/037847549390063Z
[33]
D.
Babić et al., “FUDGE: Fuzz driver generation
at scale,” in Proceedings of the 2019 27th ACM Joint
Meeting on European Software Engineering Conference
and Symposium on the Foundations of
Software Engineering, Tallinn Estonia: ACM, Aug. 2019,
pp. 975–985. doi: 10.1145/3338906.3340456.
Available: https://dl.acm.org/doi/10.1145/3338906.3340456
[34]
Open Source Security Foundation (OpenSSF),
“Ossf/fuzz-introspector.” Open Source Security Foundation
(OpenSSF), Jun. 30, 2025. Available: https://github.com/ossf/fuzz-introspector
[35]
K.
Ispoglou, D. Austin, V. Mohan, and M. Payer,
“FuzzGen: Automatic fuzzer
generation,” in 29th USENIX Security Symposium
(USENIX Security 20), 2020, pp. 2271–2287. Available:
https://www.usenix.org/conference/usenixsecurity20/presentation/ispoglou
[36]
Y.
Deng, C. S. Xia, C. Yang, S. D. Zhang, S. Yang, and L. Zhang,
“Large Language Models are Edge-Case
Fuzzers: Testing Deep Learning Libraries via
FuzzGPT,” Apr. 04, 2023. doi: 10.48550/arXiv.2304.02014.
Available: http://arxiv.org/abs/2304.02014
[37]
Google, “Google/fuzztest.” Google,
Jul. 10, 2025. Available: https://github.com/google/fuzztest
[38]
D.
Ganguly, S. Iyengar, V. Chaudhary, and S. Kalyanaraman, “Proof of
Thought : Neurosymbolic Program Synthesis
allows Robust and Interpretable
Reasoning,” Sep. 25, 2024. doi: 10.48550/arXiv.2409.17270.
Available: http://arxiv.org/abs/2409.17270
[39]
A.
d’Avila Garcez and L. C. Lamb, “Neurosymbolic AI:
The 3rd Wave,” Dec. 16, 2020. doi: 10.48550/arXiv.2012.05876.
Available: http://arxiv.org/abs/2012.05876
[40]
M.
Gaur and A. Sheth, “Building Trustworthy NeuroSymbolic AI
Systems: Consistency, Reliability,
Explainability, and Safety,” Dec. 05,
2023. doi: 10.48550/arXiv.2312.06798.
Available: http://arxiv.org/abs/2312.06798
[41]
Google, “Google
Gemini,” 2025. Available: https://gemini.google.com
[42]
Microsoft, “GitHub Copilot ·
Your AI pair programmer,” 2025. Available: https://github.com/features/copilot
[43]
D.
Giannone, “Demystifying AI Agents: ReAct-Style
Agents vs Agentic Workflows,” Feb. 09, 2025.
Available: https://medium.com/@DanGiannone/demystifying-ai-agents-react-style-agents-vs-agentic-workflows-cedca7e26471
[44]
GitHub Docs, “Choosing the runner for a
job,” 2025. Available: https://docs-internal.github.com/en/actions/how-tos/writing-workflows/choosing-where-your-workflow-runs/choosing-the-runner-for-a-job
[45]
GitHub Docs, “About GitHub-hosted runners,” 2025. Available: https://docs-internal.github.com/en/actions/concepts/runners/about-github-hosted-runners
[46]
A.
Grattafiori et al., “The Llama 3
Herd of Models,” Nov. 23, 2024. doi: 10.48550/arXiv.2407.21783.
Available: http://arxiv.org/abs/2407.21783
[47]
H.
Green and T. Avgerinos, “GraphFuzz: Library
API fuzzing with lifetime-aware dataflow graphs,” in
Proceedings of the 44th International Conference on
Software Engineering, Pittsburgh Pennsylvania: ACM,
May 2022, pp. 1070–1081. doi: 10.1145/3510003.3510228.
Available: https://dl.acm.org/doi/10.1145/3510003.3510228
[48]
T.
He, “Sighingnow/libclang.” Jul. 03, 2025. Available: https://github.com/sighingnow/libclang
[49]
Blackduck, Inc., “Heartbleed
Bug,” Mar. 07, 2025. Available: https://heartbleed.com/
[50]
CVE Program, “CVE -
CVE-2014-0160,” 2014. Available: https://cve.mitre.org/cgi-bin/cvename.cgi?name=cve-2014-0160
[51]
G.
J. Holzmann, “The Power of 10: Rules for
Developing Safety-Critical Code,” Jun. 2006,
Available: https://web.eecs.umich.edu/~imarkov/10rules.pdf
[52]
Google, “Google/honggfuzz.”
Google, Jul. 10, 2025. Available: https://github.com/google/honggfuzz
[53]
L.
Huang et al., “A Survey on
Hallucination in Large Language Models:
Principles, Taxonomy, Challenges,
and Open Questions,” ACM Trans. Inf. Syst.,
vol. 43, no. 2, pp. 1–55, Mar. 2025, doi: 10.1145/3703155. Available:
http://arxiv.org/abs/2311.05232
[54]
Z.
Li, S. Dutta, and M. Naik, “IRIS: LLM-Assisted
Static Analysis for Detecting Security
Vulnerabilities,” Apr. 06, 2025. doi: 10.48550/arXiv.2405.17238.
Available: http://arxiv.org/abs/2405.17238
[55]
Y.
Jiang et al., “When Fuzzing Meets LLMs:
Challenges and Opportunities,” in
Companion Proceedings of the 32nd ACM
International Conference on the Foundations of
Software Engineering, in ACM Conferences.
2024, pp. 492–496. doi: 10.1145/3663529.3663784.
Available: https://dl.acm.org/doi/abs/10.1145/3663529.3663784
[56]
J.
Kaddour, J. Harris, M. Mozes, H. Bradley, R. Raileanu, and R. McHardy,
“Challenges and Applications of Large Language
Models,” Jul. 19, 2023. doi: 10.48550/arXiv.2307.10169.
Available: http://arxiv.org/abs/2307.10169
[57]
D.
Kahneman, Thinking, fast and slow, 1st ed. New York:
Farrar, Straus and Giroux, 2011.
[58]
H.
Kautz, “The Third AI Summer,” presented at the
34th Annual Meeting of the Association for the
Advancement of Artificial Intelligence, Feb.
10, 2020. Available: https://www.youtube.com/watch?v=_cQITY0SPiw
[59]
B.
W. Kernighan and D. M. Ritchie, The C programming
language. in Prentice-Hall software series. Englewood
Cliffs, N.J: Prentice-Hall, 1978.
[60]
S.
Kim and S. Lee, “Performance Comparison of
Prompt Engineering and Fine-Tuning Approaches
for Fuzz Driver Generation Using Large Language
Models,” in Innovative Mobile and
Internet Services in Ubiquitous
Computing, L. Barolli, H.-C. Chen, and K. Yim, Eds., Cham:
Springer Nature Switzerland, 2025, pp. 111–120. doi: 10.1007/978-3-031-96093-2_12
[61]
C.
Cadar, D. Dunbar, and D. Engler, “KLEE:
Unassisted and Automatic Generation of
High-Coverage Tests for Complex Systems
Programs,” presented at the USENIX Symposium
on Operating Systems Design and
Implementation, Dec. 2008. Available: https://www.semanticscholar.org/paper/KLEE%3A-Unassisted-and-Automatic-Generation-of-Tests-Cadar-Dunbar/0b93657965e506dfbd56fbc1c1d4b9666b1d01c8
[62]
N.
Kosmyna et al., “Your Brain on
ChatGPT: Accumulation of Cognitive
Debt when Using an AI Assistant for
Essay Writing Task,” Jun. 10, 2025. doi: 10.48550/arXiv.2506.08872.
Available: http://arxiv.org/abs/2506.08872
[63]
H.
Chase, “LangChain.” Oct. 2022. Available: https://github.com/langchain-ai/langchain
[64]
H.-P. H. Lee et al., “The
Impact of Generative AI on Critical
Thinking: Self-Reported Reductions in
Cognitive Effort and Confidence Effects From a
Survey of Knowledge Workers,” 2025,
Available: https://hankhplee.com/papers/genai_critical_thinking.pdf
[65]
P.
Lewis et al., “Retrieval-Augmented
Generation for Knowledge-Intensive NLP
Tasks,” Apr. 12, 2021. doi: 10.48550/arXiv.2005.11401.
Available: http://arxiv.org/abs/2005.11401
[66]
H.
Li, “Language models: Past, present, and future,”
Commun. ACM, vol. 65, no. 7, pp. 56–63, Jun. 2022, doi: 10.1145/3490443. Available:
https://dl.acm.org/doi/10.1145/3490443
[67]
LLVM Project, “libFuzzer – a library for coverage-guided fuzz
testing. — LLVM 21.0.0git documentation,” 2025.
Available: https://llvm.org/docs/LibFuzzer.html
[68]
D.
Liu, J. Metzman, O. Chang, and G. O. S. S. Team, “AI-Powered
Fuzzing: Breaking the Bug Hunting
Barrier,” Aug. 16, 2023. Available: https://security.googleblog.com/2023/08/ai-powered-fuzzing-breaking-bug-hunting.html
[69]
J.
Liu, “LlamaIndex.” Nov. 2022. doi: 10.5281/zenodo.1234.
Available: https://github.com/jerryjliu/llama_index
[70]
LLVM Project, “The LLVM Compiler
Infrastructure Project,” 2025. Available: https://llvm.org/
[71]
V.
J. M. Manes et al., “The Art,
Science, and Engineering of
Fuzzing: A Survey,” Apr. 07, 2019. doi:
10.48550/arXiv.1812.00140.
Available: http://arxiv.org/abs/1812.00140
[72]
E.
Martin, “Ninja-build/ninja.” ninja-build, Jul. 14, 2025.
Available: https://github.com/ninja-build/ninja
[73]
A.
Mastropaolo and D. Poshyvanyk, “A Path Less Traveled:
Reimagining Software Engineering Automation via a
Neurosymbolic Paradigm,” May 04, 2025. doi: 10.48550/arXiv.2505.02275.
Available: http://arxiv.org/abs/2505.02275
[74]
T.
Mikolov, K. Chen, G. Corrado, and J. Dean, “Efficient
Estimation of Word Representations in
Vector Space,” Sep. 06, 2013. doi: 10.48550/arXiv.1301.3781.
Available: http://arxiv.org/abs/1301.3781
[75]
B.
P. Miller, L. Fredriksen, and B. So, “An empirical study of the
reliability of UNIX utilities,” Commun.
ACM, vol. 33, no. 12, pp. 32–44, Dec. 1990, doi: 10.1145/96267.96279.
Available: https://dl.acm.org/doi/10.1145/96267.96279
[76]
E.
Nijkamp, H. Hayashi, C. Xiong, S. Savarese, and Y. Zhou,
“CodeGen2: Lessons for training llms on
programming and natural languages,” ICLR, 2023.
[77]
E.
Nijkamp et al., “CodeGen: An
open large language model for code with multi-turn program
synthesis,” ICLR, 2023.
[78]
OpenAI et al., “GPT-4
Technical Report,” Mar. 04, 2024. doi: 10.48550/arXiv.2303.08774.
Available: http://arxiv.org/abs/2303.08774
[79]
OpenAI, “Introducing GPT-4.1
in the API,” Apr. 14, 2025. Available: https://openai.com/index/gpt-4-1/
[80]
OpenAI Docs, “GPT-4.1 mini -
Open AI API,” 2025. Available: https://platform.openai.com
[81]
OpenAI Docs, “Text-embedding-3-small -
OpenAI API,” 2025. Available: https://platform.openai.com
[82]
OpenAI Docs, “Model optimization -
OpenAI API,” 2025. Available: https://platform.openai.com
[83]
A.
Arya, O. Chang, J. Metzman, K. Serebryany, and D. Liu,
“OSS-Fuzz.” Apr. 08, 2025. Available: https://github.com/google/oss-fuzz
[84]
D.
Liu, O. Chang, J. metzman, M. Sablotny, and M. Maruseac, “OSS-fuzz-gen: Automated fuzz target
generation.” May 2024. Available: https://github.com/google/oss-fuzz-gen
[85]
OSS-Fuzz Maintainers, “Introducing LLM-based harness synthesis for unfuzzed
projects,” May 27, 2024. Available: https://blog.oss-fuzz.com/posts/introducing-llm-based-harness-synthesis-for-unfuzzed-projects/
[86]
OSS-Fuzz, “OSS-Fuzz
Documentation,” 2025. Available: https://google.github.io/oss-fuzz/
[87]
OWASP Foundation, “Fuzzing.”
Available: https://owasp.org/www-community/Fuzzing
[88]
J.
Pakkanen, “Mesonbuild/meson.” The Meson Build System, Jul.
14, 2025. Available: https://github.com/mesonbuild/meson
[89]
N.
Perry, M. Srivastava, D. Kumar, and D. Boneh, “Do Users
Write More Insecure Code with AI Assistants?”
Dec. 18, 2023. doi: 10.48550/arXiv.2211.03622.
Available: http://arxiv.org/abs/2211.03622
[90]
pip developers, “Pip documentation
V25.1.1,” 2025. Available: https://pip.pypa.io/en/stable/
[91]
D.
Wang, G. Zhou, L. Chen, D. Li, and Y. Miao,
“ProphetFuzz: Fully Automated Prediction
and Fuzzing of High-Risk Option Combinations
with Only Documentation via Large Language
Model,” Sep. 01, 2024. doi: 10.1145/3658644.3690231.
Available: http://arxiv.org/abs/2409.00922
[92]
PyTest Dev Team,
“Pytest-dev/pytest.” pytest-dev, Jul. 18, 2025. Available:
https://github.com/pytest-dev/pytest
[93]
Python Software Foundation,
“Python/mypy.” Python, Jul. 18, 2025. Available: https://github.com/python/mypy
[94]
A.
Radford, K. Narasimhan, T. Salimans, and I. Sutskever, “Improving
language understanding by generative pre-training,” 2018,
Available: https://www.mikecaptain.com/resources/pdf/GPT-1.pdf
[95]
A.
Radford, J. Wu, R. Child, D. Luan, D. Amodei, and I. Sutskever,
“Language models are unsupervised multitask learners,”
OpenAI blog, vol. 1, no. 8, p. 9, 2019, Available: https://storage.prod.researchhub.com/uploads/papers/2020/06/01/language-models.pdf
[96]
N.
Rathaus and G. Evron, Open source fuzzing tools. Burlington,
MA: Syngress Pub, 2007.
[97]
S.
Yao et al., “ReAct: Synergizing
Reasoning and Acting in Language
Models,” Mar. 10, 2023. doi: 10.48550/arXiv.2210.03629.
Available: http://arxiv.org/abs/2210.03629
[98]
A.
Rebert et al., “Optimizing seed selection for
fuzzing,” in Proceedings of the 23rd USENIX
conference on Security Symposium, in
SEC’14. USA: USENIX Association, Aug. 2014, pp.
861–875.
[99]
D.
M. Ritchie, S. C. Johnson, M. E. Lesk, and B. W. Kernighan, “The
C programming language,” Bell Sys. Tech. J,
vol. 57, no. 6, pp. 1991–2019, 1978, Available: https://www.academia.edu/download/67840358/1978.07_Bell_System_Technical_Journal.pdf#page=85
[100]
Rust Project Developers, “Rust
Programming Language,” 2025. Available: https://www.rust-lang.org/
[101]
J. Saarinen, “Further flaws render
Shellshock patch ineffective,” Sep. 29, 2014.
Available: https://www.itnews.com.au/news/further-flaws-render-shellshock-patch-ineffective-396256
[102]
A. Sarkar and I. Drosos, “Vibe coding:
Programming through conversation with artificial intelligence,”
Jun. 29, 2025. doi: 10.48550/arXiv.2506.23253.
Available: http://arxiv.org/abs/2506.23253
[103]
M. K. Sarker, L. Zhou, A. Eberhart, and P.
Hitzler, “Neuro-symbolic artificial intelligence:
Current trends,” AIC, vol. 34, no. 3, pp.
197–209, Mar. 2022, doi: 10.3233/aic-210084.
Available: https://journals.sagepub.com/doi/full/10.3233/AIC-210084
[104]
N. Sasirekha, A. Edwin Robert, and M.
Hemalatha, “Program Slicing Techniques and its
Applications,” IJSEA, vol. 2, no. 3, pp.
50–64, Jul. 2011, doi: 10.5121/ijsea.2011.2304.
Available: http://www.airccse.org/journal/ijsea/papers/0711ijsea04.pdf
[105]
T. Preston-Werner, “Semantic
Versioning 2.0.0.” Available: https://semver.org/
[106]
K. Serebryany, D. Bruening, A. Potapenko, and
D. Vyukov, “AddressSanitizer: A fast
address sanity checker,” in 2012 USENIX annual
technical conference (USENIX ATC 12), 2012, pp.
309–318. Available: https://www.usenix.org/conference/atc12/technical-sessions/presentation/serebryany
[107]
A. Sheth, K. Roy, and M. Gaur,
“Neurosymbolic AI – Why,
What, and How,” May 01, 2023. doi: 10.48550/arXiv.2305.00813.
Available: http://arxiv.org/abs/2305.00813
[108]
W. Shi, Y. Zhang, X. Xing, and J. Xu,
“Harnessing Large Language Models for Seed
Generation in Greybox Fuzzing,” Nov. 27,
2024. doi: 10.48550/arXiv.2411.18143.
Available: http://arxiv.org/abs/2411.18143
[109]
T. Simonite, “This Bot Hunts
Software Bugs for the Pentagon,”
Wired, Jun. 01, 2020. Available: https://www.wired.com/story/bot-hunts-software-bugs-pentagon/
[110]
Stanford NLP Team, “Signatures -
DSPy Documentation,” 2025. Available: https://dspy.ai/learn/programming/signatures/
[111]
Stanford NLP Team, “ReAct -
DSPy Documentation,” 2025. Available: https://dspy.ai/api/modules/ReAct/
[112]
Y. Sun, “Automated
Generation and Compilation of Fuzz
Driver Based on Large Language Models,” in
Proceedings of the 2024 9th International Conference on
Cyber Security and Information
Engineering, in ICCSIE ’24. New York, NY, USA:
Association for Computing Machinery, Dec. 2024, pp. 461–468. doi: 10.1145/3689236.3689272.
Available: https://doi.org/10.1145/3689236.3689272
[113]
M. Sutton, A. Greene, and P. Amini,
Fuzzing: Brute force vulnerabilty discovery. Upper Saddle
River, NJ: Addison-Wesley, 2007.
[114]
A. Takanen, J. DeMott, C. Miller, and A.
Kettunen, Fuzzing for software security testing and quality
assurance, Second edition. in Information security and privacy
library. Boston London Norwood, MA: Artech House, 2018.
[115]
The OpenSSL Project,
“Openssl/openssl.” OpenSSL, Jul. 15, 2025. Available: https://github.com/openssl/openssl
[116]
L. Thomason,
“Leethomason/Tinyxml2.” Jul. 10, 2025. Available: https://github.com/leethomason/tinyxml2
[117]
D. Tilwani, R. Venkataramanan, and A. P. Sheth,
“Neurosymbolic AI approach to
Attribution in Large Language Models,”
Sep. 30, 2024. doi: 10.48550/arXiv.2410.03726.
Available: http://arxiv.org/abs/2410.03726
[118]
Y. Deng, C. S. Xia, H. Peng, C. Yang, and L.
Zhang, “Large Language Models Are Zero-Shot Fuzzers:
Fuzzing Deep-Learning Libraries via Large Language
Models,” in Proceedings of the 32nd ACM SIGSOFT
International Symposium on Software Testing and
Analysis, in ISSTA 2023. New York, NY,
USA: Association for Computing Machinery, Jul. 2023, pp. 423–435. doi:
10.1145/3597926.3598067.
Available: https://dl.acm.org/doi/10.1145/3597926.3598067
[119]
L. Torvalds, “Git.” Apr. 07, 2005.
Available: https://git-scm.com/
[120]
Unicorn Engine,
“Unicorn-engine/unicorn.” Unicorn Engine, Jul. 15, 2025.
Available: https://github.com/unicorn-engine/unicorn
[121]
B. Jeong et al.,
“UTopia: Automatic Generation of
Fuzz Driver using Unit Tests,” in
2023 IEEE Symposium on Security and
Privacy (SP), May 2023, pp. 2676–2692.
doi: 10.1109/SP46215.2023.10179394.
Available: https://ieeexplore.ieee.org/abstract/document/10179394
[122]
A. Vaswani et al., “Attention
Is All You Need,” Aug. 01, 2023. doi: 10.48550/arXiv.1706.03762.
Available: http://arxiv.org/abs/1706.03762
[123]
A. Velasco, A. Garryyeva, D. N. Palacio, A.
Mastropaolo, and D. Poshyvanyk, “Toward Neurosymbolic
Program Comprehension,” Feb. 03, 2025. doi: 10.48550/arXiv.2502.01806.
Available: http://arxiv.org/abs/2502.01806
[124]
Python Software Foundation, “Venv —
Creation of virtual environments,” Jul. 17, 2025.
Available: https://docs.python.org/3/library/venv.html
[125]
Z. Wang, Z. Chu, T. V. Doan, S. Ni, M. Yang,
and W. Zhang, “History, development, and principles of large
language models: An introductory survey,” AI Ethics,
vol. 5, no. 3, pp. 1955–1971, Jun. 2025, doi: 10.1007/s43681-024-00583-7.
Available: https://doi.org/10.1007/s43681-024-00583-7
[126]
D. Wheeler, “How to Prevent
the next Heartbleed,” 2014. Available: https://dwheeler.com/essays/heartbleed.html
[127]
M. Woolf, “The Problem With
LangChain,” Jul. 14, 2023. Available: https://minimaxir.com/2023/07/langchain-problem/
[128]
Woyera, “6 Reasons why
Langchain Sucks,” Sep. 08, 2023. Available: https://medium.com/@woyera/6-reasons-why-langchain-sucks-b6c99c98efbe
[129]
H. Xu et al.,
“CKGFuzzer: LLM-Based Fuzz Driver Generation
Enhanced By Code Knowledge Graph,” Dec. 20, 2024. doi: 10.48550/arXiv.2411.11532.
Available: http://arxiv.org/abs/2411.11532
[130]
S. Yao et al., “Tree of
Thoughts: Deliberate Problem Solving with
Large Language Models,” Dec. 03, 2023. doi: 10.48550/arXiv.2305.10601.
Available: http://arxiv.org/abs/2305.10601
[131]
M. Zhang, J. Liu, F. Ma, H. Zhang, and Y.
Jiang, “IntelliGen: Automatic Driver
Synthesis for FuzzTesting,” Mar. 01, 2021.
doi: 10.48550/arXiv.2103.00862.
Available: http://arxiv.org/abs/2103.00862
[132]
S. Zhao, Y. Yang, Z. Wang, Z. He, L. K. Qiu,
and L. Qiu, “Retrieval Augmented Generation
(RAG) and Beyond: A Comprehensive
Survey on How to Make your
LLMs use External Data More Wisely,”
Sep. 23, 2024. doi: 10.48550/arXiv.2409.14924.
Available: http://arxiv.org/abs/2409.14924