
National and Kapodistrian University of Athens

School of Sciences
Department of Informatics and Telecommunications

OverHAuL: Harnessing Automation for C Libraries
with Large Language Models

BSc Thesis

Konstantinos Chousos

Supervisor: Thanassis Avgerinos, Assistant Professor

Athens

July, 2025

https://orcid.org/0009-0008-6063-7915

Software vulnerabilities remain pervasive and challenging to detect, making robust testing
approaches imperative. Fuzzing is an established software testing method for uncovering
such vulnerabilities, through random input execution. Recent research has leveraged Large
Language Models (LLMs) to enhance fuzz driver generation. However, most contemporary
tools rely on additional resources beyond the target code, such as client programs or preexisting
harnesses, limiting their scalability and applicability. In this thesis, we present OverHAuL, a
neurosymbolic AI system that employs LLM agents to automatically generate fuzzing harnesses
directly from library code, eliminating the need for auxiliary artifacts. To comprehensively
evaluate OverHAuL, we construct a benchmark suite consisting of ten open-source C libraries.
Our empirical analysis demonstrates that OverHAuL achieves an 81.25% success rate in harness
generation across the evaluated projects, underscoring its effectiveness and potential to facilitate
more efficient vulnerability discovery.

Preface

This thesis was prepared in Athens, Greece, during the academic year 2024–2025, fulfilling a
requirement for the Bachelor of Science degree at the Department of Informatics and Telecom-
munications of the National and Kapodistrian University of Athens. The research presented
herein was carried out under the supervision of Prof. Thanassis Avgerinos and in accordance
with the guidelines stipulated by the department. All processes and methodologies adopted
during the research adhere to the academic and ethical standards of the university. The final
version of this thesis is hosted online and is also archived in the department’s records, made
publicly accessible through the university’s digital repository Pergamos.

iii

https://www.di.uoa.gr/en
https://www.di.uoa.gr/en
https://en.uoa.gr/
https://cgi.di.uoa.gr/~thanassis/
https://kchousos.github.io/BSc-Thesis/
https://pergamos.lib.uoa.gr/uoa/dl/object/5300250

To my beloved parents who, through their example, taught me patience, resilience and
perseverance.

Acknowledgments

I would like to express my gratitude to my supervisor, Prof. Thanassis Avgerinos, for his
insightful guidance, patience, and unwavering encouragement throughout this journey. His
openness and our shared passion for the subject greatly enhanced my enjoyment of the thesis
process.

I am also thankful to my fellow group members in Prof. Avgerinos’ weekly meetings, whose
willingness to exchange ideas and offer support was invaluable. My appreciation extends to
Jorgen and Phaedon, friends who provided thoughtful input and advice along the way.

A special thank you goes to my parents Giannis and Gianna, Christina, and my friends for their
constant support and understanding. Their patience and encouragement helped me persevere
through this challenging period.

v

Table of contents

1. Introduction 1
1.1. Thesis Structure . 2
1.2. Summary of Contributions . 2

2. Background 3
2.1. Fuzz Testing . 3

2.1.1. Motivation . 5
2.1.2. Methodology . 6
2.1.3. Challenges in Adoption . 8

2.2. Large Language Models . 8
2.2.1. State-of-the-art GPTs . 9
2.2.2. Prompting . 9
2.2.3. LLMs for Coding . 10
2.2.4. LLMs for Fuzzing . 11

2.3. Neurosymbolic AI . 12

3. OverHAuL’s Design 13
3.1. Installation and Usage . 14
3.2. Architecture . 15

3.2.1. Project Analysis . 15
3.2.2. Harness Creation . 16
3.2.3. Harness Evaluation . 16

3.3. OverHAuL Techniques . 17
3.3.1. Feedback Loop . 17
3.3.2. React Agents Triplet . 17
3.3.3. Codebase Oracle . 18

3.4. High-Level Algorithm . 19
3.5. Scope . 20
3.6. Implementation . 20

3.6.1. Development Tools . 21
3.6.2. Reproducibility . 21

4. Evaluation 29
4.1. Experimental Benchmark . 29

4.1.1. Local Benchmarking . 30

vi

4.2. Results . 31
4.2.1. RQ 1: Can OverHAuL generate working harnesses for unfuzzed C projects? 33
4.2.2. RQ2: What characteristics do these harnesses have? Are they similar to

man-made harnesses? . 33
4.2.3. RQ3: How do LLM usage patterns influence the generated harnesses? 33
4.2.4. RQ4: How do different symbolic techniques affect the generated harnesses? 35

4.3. Discussion . 35
4.3.1. Threats to Validity . 35

5. Related work 37
5.1. Static and Dynamic Analysis-Powered Fuzzing 37
5.2. Extra Resources Required . 39
5.3. Only Source Code Required . 40
5.4. Differences With OverHAuL . 41

6. Future Work 43
6.1. Enhancements to Core Features . 43
6.2. Experimentation with Large Language Models and Data Representation 44
6.3. Comprehensive Evaluation and Benchmarking 44
6.4. Practical Deployment and Community Engagement 45

7. Conclusion 46

Bibliography 48

Appendices 56

A. Abandoned Techniques 56

B. Sample Generated Harnesses 58
B.1. clibs/buffer . 58
B.2. willemt/cbuffer . 60
B.3. dvhar/dateparse . 63
B.4. h2non/semver.c . 64

C. DSPy Custom Signatures 68

vii

List of Figures

3.1. OverHAuL Workflow . 13
3.2. OverHAuL execution on dateparse . 15

4.1. Benchmark Results . 31
4.2. Iterations Heatmap . 32

viii

List of Listings

2.1. Fuzzing harness format . 6
2.2. Example fuzzing harness . 7
2.3. Compilation of harness . 7

3.1. OverHAuL installation . 22
3.2. Static analysis report . 23
3.3. Codebase oracle samples . 24
3.4. Generated compilation command . 24
3.5. Sample dateparse harness . 25
3.6. Sample dateparse crash input . 26
3.7. Sample dateparse harness output . 27
3.8. DSPy example . 28

ix

List of Tables

4.1. The benchmark project corpus. Each project name links to its corresponding
GitHub repository. Each is followed by a short description, its GitHub stars
count and its Significant Lines of Code (SLOC), as of July 18th, 2025. 30

x

1. Introduction

Modern society’s reliance on software systems continues to grow, particularly in mission-
critical environments such as healthcare, aerospace, and industrial infrastructure. The reliability
of these systems is crucial—failures or vulnerabilities can lead to severe financial losses and
even endanger lives. A significant portion of this foundational software is still written in C,
a language created by Dennis Ritchie in 1972 [1], [2]. Although C has been instrumental in
the evolution of software, its lack of safeguards—especially around memory management—is
notorious. Memory safety bugs remain a persistent vulnerability, and producing provably and
verifiably safe code in C is exceptionally challenging—take for example the stringent guidelines
required by organizations like NASA for safety-critical applications [3].

To address these challenges, programming languages with built-in memory safety features,
such as Ada and Rust, have been introduced [4], [5]. Nevertheless, no language offers absolute
immunity from such vulnerabilities. In addition, much of the global software infrastructure
remains written in memory-unsafe languages, with C-based codebases unlikely to disappear
in the near future. Ultimately, the potential for human error grows in tandem with increasing
software complexity, meaning software is only as safe as its weakest link.

The advent of Large Language Models (LLMs) has profoundly influenced software development.
Developers have began to regularly use LLMs for code generation, refactoring, and documenta-
tion assistance. These models at large demonstrate remarkable programming capabilities. Still,
they can often introduce subtle errors that may go unnoticed by even experienced developers.
Many researchers argue that the use of such technologies inherently contributes to the genera-
tion of insecure code [6]–[8]. As LLM-generated code becomes more pervasive, so does the
likelihood of unnoticed software errors escaping traditional human review.

Within this landscape, the need to detect vulnerabilities and ensure software quality is more
urgent than ever. Fuzzing, a technique that generates and executes a vast array of test cases to
identify potential bugs, has emerged as a vital approach for detecting memory safety violations.
However, the necessity of manually-written harnesses—programs designed to exercise the
Application Programming Interface (API) of the software under examination—poses a significant
barrier to its broader adoption. As a result, the field of fuzzing automation through LLMs has
gained considerable traction in recent years. Despite extensive advances in automating fuzzing,
significant hurdles remain. Most current automatic-fuzzing systems require pre-existing fuzz
harnesses [9] or depend on sample client code to exercise the target program [10]–[12]. Often,
these tools still rely on developers for integration or final evaluation, leaving parts of the process
manual and incomplete. Consequently, the application of LLMs to harness generation and
end-to-end fuzzing remains a developing field.

1

This thesis aims to push the boundaries of fuzzing automation by leveraging the code synthesis
and most importantly reasoning strengths of modern LLMs. We introduce OverHAuL, a system
that accepts a bare and previously unfuzzed C project, utilizes LLM agents to author a new
fuzzing harness from scratch and evaluates its efficacy in a closed iterative feedback loop. In
this loop, said feedback is constantly utilized to improve the generated harness. This end-to-end
approach is designed to minimize manual effort and accelerate vulnerability detection in C
codebases.

1.1. Thesis Structure

This thesis begins by establishing the fundamental concepts required to contextualize its contri-
butions (Chapter 2). Subsequently, we introduce the OverHAuL system, providing a compre-
hensive description of its architecture, the innovative techniques employed and their respective
roles in advancing the state of automated harness generation (Chapter 3). In the evaluation
chapter (Chapter 4), we assemble a benchmark suite comprised of ten open-source C projects
and systematically evaluate the effectiveness of OverHAuL by measuring the number of suc-
cessfully generated harnesses. Additionally, we present an extensive survey of recent research
in automated fuzzing (Chapter 5), highlighting that most fuzzing systems either rely on pre-
existing harnesses or employ client code, thereby shifting the responsibility for validation and
integration onto the user. Finally, we discuss avenues for future enhancements to OverHAuL
and conclude with a summary of our findings.

1.2. Summary of Contributions

This thesis presents the following key contributions:

1. The introduction of OverHAuL, a framework that enables fully automated end-to-end
fuzzing harness generation using LLMs. It introduces novel techniques like an iterative
feedback loop between LLM agents and the usage of a codebase oracle for code exploration.

2. Empirical validation through benchmarking experiments using ten real-world open source
projects. We demonstrate that OverHAuL generates effective fuzzing harnesses with a
success rate of 81.25%.

3. Full open sourcing of all research artifacts, datasets, and code at https://github.com/kch
ousos/OverHAuL to encourage further research and ensure reproducibility.

This work aims to advance the use of LLMs in automated software testing, particularly for
legacy codebases where building harnesses by hand is impractical or costly. By doing so, we
strive to enhance software security and reliability in sectors where correctness is imperative.

2

https://github.com/kchousos/OverHAuL
https://github.com/kchousos/OverHAuL

2. Background

This chapter provides the foundational and necessary background for this thesis, by exploring
the core concepts and technological advances central to modern fuzzing and Large Language
Models (LLMs). It begins with an in-depth definition and overview of fuzz testing—an auto-
mated technique for uncovering software bugs and vulnerabilities through randomized input
generation—highlighting its methodology, tools, and impact. What follows is a discussion
on LLMs and their transformative influence on natural language processing, programming,
and code generation. Challenges and opportunities in applying LLMs to tasks such as fuzzing
harness generation are examined, leading to a discussion of Neurosymbolic AI, an emerging
approach that combines neural and symbolic reasoning to address the limitations of current AI
systems. This multifaceted background establishes the context necessary for understanding the
research and innovations presented in subsequent chapters.

2.1. Fuzz Testing

Fuzzing is an automated software-testing technique in which a Program Under Test (PUT) is
executed with (pseudo-)random inputs in the hope of exposing undefined behavior. When
such behavior manifests as a crash, hang, or memory-safety violation, the corresponding input
constitutes a test-case that reveals a bug and often a vulnerability [13]. In a certain sense,
fuzzing is a form of adversarial, penetration-style testing carried out by the defender before the
adversary has an opportunity to do so. Interest in the technique surged after the publication of
three practitioner-oriented books in 2007–2008 [14]–[16].

Historically, the term was coined by Miller et al. in 1990, who used “fuzz” to describe a program
that “generates a stream of random characters to be consumed by a target program” [17].
This informal usage captured the essence of what fuzzing aims to do: stress test software by
bombarding it with unexpected inputs to reveal bugs. To formalize this concept, we adopt
Manes et al.’s rigorous definitions [13]:

Definition 2.1 (Fuzzing). Fuzzing is the execution of a Program Under Test (PUT) using input(s)
sampled from an input space (the fuzz input space) that protrudes the expected input space of
the PUT [13].

This means fuzzing involves running the target program on inputs that go beyond those it
is typically designed to handle, aiming to uncover hidden issues. An individual instance of
such execution—or a bounded sequence thereof—is called a fuzzing run. When these runs are

3

conducted systematically and at scale with the specific goal of detecting violations of a security
policy, the activity is known as fuzz testing (or simply fuzzing):

Definition 2.2 (Fuzz Testing). Fuzz testing is the use of fuzzing to test whether a PUT violates
a security policy [13].

This distinction highlights that fuzz testing is fuzzing with an explicit focus on security properties
and policy enforcement. Central to managing this process is the fuzzer engine, which orchestrates
the execution of one or more fuzzing runs as part of a fuzz campaign. A fuzz campaign represents
a concrete instance of fuzz testing tailored to a particular program and security policy:

Definition 2.3 (Fuzzer, Fuzzer Engine). A fuzzer is a program that performs fuzz testing on a
PUT [13].

Definition 2.4 (Fuzz Campaign). A fuzz campaign is a specific execution of a fuzzer on a PUT
with a specific security policy [13].

Throughout each execution within a campaign, a bug oracle plays a critical role in evaluating
the program’s behavior to determine whether it violates the defined security policy:

Definition 2.5 (Bug Oracle). A bug oracle is a component (often inside the fuzzer) that deter-
mines whether a given execution of the PUT violates a specific security policy [13].

In practice, bug oracles often rely on runtime instrumentation techniques, such as monitoring
for fatal POSIX signals (e.g., SIGSEGV) or using sanitizers like AddressSanitizer (ASan) [18]. Tools
like LibFuzzer [19] commonly incorporate such instrumentation to reliably identify crashes or
memory errors during fuzzing.

Most fuzz campaigns begin with a set of seeds—inputs that are well-formed and belong to the
PUT’s expected input space—called a seed corpus. These seeds serve as starting points from
which the fuzzer generates new test cases by applying transformations or mutations, thereby
exploring a broader input space:

Definition 2.6 (Seed). An input given to the PUT that is mutated by the fuzzer to produce new
test cases. During a fuzz campaign (Definition 2.4) all seeds are stored in a seed pool or corpus
[13].

The process of selecting an effective initial corpus is crucial because it directly impacts how
quickly and thoroughly the fuzzer can cover the target program’s code. This challenge—studied
as the seed-selection problem—involves identifying seeds that enable rapid discovery of diverse
execution paths and is non-trivial [20]. A well-chosen seed set often accelerates bug discovery
and improves overall fuzzing efficiency.

4

2.1.1. Motivation

The purpose of fuzzing relies on the assumption that there are bugs within every
program, which are waiting to be discovered. Therefore, a systematic approach
should find them sooner or later.

— OWASP Foundation [21]

Fuzz testing provides several key advantages that contribute substantially to software quality
and security. First, by uncovering vulnerabilities early in the development cycle, fuzzing
reduces both the cost and risk associated with addressing security flaws after deployment. This
proactive approach not only minimizes potential exposure but also streamlines the remediation
process. Additionally, by subjecting software to the same randomized, adversarial inputs
that malicious actors might use, fuzz testing puts defenders on equal footing with attackers,
enhancing preparedness against emerging zero-day threats.

Beyond security, fuzzing plays a crucial role in improving the robustness and correctness of
software systems. It is particularly effective at identifying logical errors and stability issues in
complex, high-throughput APIs—such as decompressors and parsers—especially when these
systems are expected to handle only well-formed inputs. Moreover, the integration of fuzz
testing into continuous integration pipelines provides an effective guard against regressions.
By systematically re-executing a corpus of previously discovered crashing inputs, developers
can ensure that resolved bugs do not resurface in subsequent releases, thereby maintaining a
consistent level of software reliability over time.

2.1.1.1. Success Stories

Heartbleed (CVE-2014-0160) [22], [23] arose from a buffer over-read1 in the TLS implementation
of the OpenSSL library [24], introduced on 1st of February 2012 and unnoticed until 1st of April
2014. Later analysis showed that a simple fuzz campaign exercising the TLS heartbeat extension
would have revealed the defect almost immediately [25].

Likewise, the Shellshock (or Bashdoor) family of bugs in GNU Bash [26] enabled arbitrary com-
mand execution on many UNIX systems. While the initial flaw was fixed promptly, subsequent
bug variants were discovered by Google’s Michał Zalewski using his own fuzzer—the now
ubiquitous AFL fuzzer [27]—in late 2014 [28].

On the defensive tooling side, the security tool named Mayhem [29], [30]—developed by the
company of the same name, formerly known as ForAllSecure—has since been adopted by the
US Air Force, the Pentagon, Cloudflare, and numerous open-source communities. It has found
and facilitated the remediation of thousands of previously unknown vulnerabilities, from errors
in Cloudflare’s infrastructure to bugs in open-source projects like OpenWRT [31].

1https://xkcd.com/1354/ provides a concise illustration.

5

https://xkcd.com/1354/

These cases underscore the central thesis of fuzz testing: exhaustive manual review is infeasible,
but scalable stochastic exploration reliably surfaces the critical few defects that matter most.

2.1.2. Methodology

As previously discussed, fuzz testing of a PUT is typically conducted using a dedicated fuzzing
engine (Definition 2.3). Among the most widely adopted fuzzers for C and C++ projects and
libraries are AFL [27]—which has since evolved into AFL++ [32]—and LibFuzzer [19]. Within the
OverHAuL framework, LibFuzzer is preferred due to its superior suitability for library fuzzing,
whereas AFL++ predominantly targets executables and binary fuzzing.

2.1.2.1. LibFuzzer

LibFuzzer [19] is an in-process, coverage-guided evolutionary fuzzing engine primarily designed
for testing libraries. It forms part of the LLVM ecosystem [33] and operates by linking directly
with the library under evaluation. The fuzzer delivers mutated input data to the library through
a designated fuzzing entry point, commonly referred to as the fuzz target or harness.

Definition 2.7 (Fuzz target). A function that accepts a byte array as input and exercises the
application programming interface (API) under test using these inputs [19]. This construct is
also known as a fuzz driver, fuzzer entry point, or fuzzing harness.

For the remainder of this thesis, the terms presented in Definition 2.7 will be used interchange-
ably.

To effectively validate an implementation or library, developers are required to author a fuzzing
harness that invokes the target library’s API functions utilizing the fuzz-generated inputs. This
harness serves as the principal interface for the fuzzer and is executed iteratively, each time
with mutated input designed to maximize code coverage and uncover defects. To comply with
LibFuzzer’s interface requirements, a harness must conform to the function signature shown in
Listing 2.1. A more illustrative example of such a harness is provided in Listing 2.2.

Listing 2.1 This function receives the fuzzing input via a pointer to an array of bytes (Data)
and its associated size (Size). Efficiency in fuzzing is achieved by invoking the API of interest
within the body of this function, thereby allowing the fuzzer to explore a broad spectrum of
behavior through systematic input mutation.

1 int LLVMFuzzerTestOneInput(const uint8_t *Data, size_t Size) {

2 DoSomethingInterestingWithData(Data, Size);

3 return 0;

4 }

6

Listing 2.2 This example demonstrates a minimal harness that triggers a controlled crash upon
receiving HI! as input.

1 // test_fuzzer.cpp

2 #include <stdint.h>

3 #include <stddef.h>

4

5 extern "C" int LLVMFuzzerTestOneInput(const uint8_t *data, size_t size) {

6 if (size > 0 && data[0] == 'H')

7 if (size > 1 && data[1] == 'I')

8 if (size > 2 && data[2] == '!')

9 __builtin_trap();

10 return 0;

11 }

To compile and link such a harness with LibFuzzer, the Clang compiler—also part of the LLVM
project [33]—must be used alongside appropriate compiler flags. For instance, compiling the
harness in Listing 2.2 can be achieved as shown in Listing 2.3.

Listing 2.3 This example illustrates the compilation and execution workflow necessary for
deploying a LibFuzzer-based fuzzing harness.

1 # Compile test_fuzzer.cc with AddressSanitizer and link against LibFuzzer.

2 clang++ -fsanitize=address,fuzzer test_fuzzer.cc

3 # Execute the fuzzer without any pre-existing seed corpus.

4 ./a.out

2.1.2.2. AFL and AFL++

American Fuzzy Lop (AFL) [27], developed by Michał Zalewski, is a seminal fuzzer targeting C
and C++ applications. Its core methodology relies on instrumented binaries to provide edge
coverage feedback, thereby guiding input mutation towards unexplored program paths. AFL
supports several emulation backends including QEMU [34]—an open-source CPU emulator
facilitating fuzzing on diverse architectures—and Unicorn [35], a lightweight multi-platform CPU
emulator. While AFL established itself as a foundational tool within the fuzzing community, its
successor AFL++ [32] incorporates numerous enhancements and additional features to improve
fuzzing efficacy.

AFL operates by ingesting seed inputs from a specified directory (seeds_dir), applying mutations,
and then executing the target binary to discover novel execution paths. Execution can be
initiated using the following command-line syntax:

7

1 ./afl-fuzz -i seeds_dir -o output_dir -- /path/to/tested/program

AFL is capable of fuzzing both black-box and instrumented binaries, employing a fork-server
mechanism to optimize performance. It additionally supports persistent mode execution as well
as modes leveraging QEMU and Unicorn emulators, thereby providing extensive flexibility for
different testing environments.

Although AFL is traditionally utilized for fuzzing standalone programs or binaries, it is
also capable of fuzzing libraries and other software components. In such scenarios, rather
than implementing the LLVMFuzzerTestOneInput style harness, AFL can use the standard main()

function as the fuzzing entry point. Nonetheless, AFL also accommodates integration with
LLVMFuzzerTestOneInput-based harnesses, underscoring its adaptability across varied fuzzing use
cases.

2.1.3. Challenges in Adoption

Despite its potential for uncovering software vulnerabilities, fuzzing remains a relatively under-
utilized testing technique compared to more established methodologies such as Test-Driven
Development (TDD). This limited adoption can be attributed, in part, to the substantial initial
investment required to design and implement appropriate test harnesses that enable effective
fuzzing processes. Furthermore, the interpretation of fuzzing outcomes—particularly the iden-
tification, diagnostic analysis, and prioritization of program crashes—demands considerable
resources and specialized expertise. These factors collectively pose significant barriers to the
widespread integration of fuzzing within standard software development and testing practices.
OverHAuL addresses this challenge by facilitating the seamless integration of fuzzing into
developers’ workflows, minimizing initial barriers and reducing upfront costs to an almost
negligible level.

2.2. Large Language Models

Natural Language Processing (NLP), a subfield of AI, has a rich and ongoing history that has
evolved significantly since its beginning in the 1990s [36], [37]. Among the most notable—and
recent—advancements in this domain are LLMs, which have transformed the landscape of NLP
and AI in general.

At the core of many LLMs is the attention mechanism, which was introduced by Bahdanau
et al. in 2014 [38]. This pivotal innovation enabled models to focus on relevant parts of the
input sequence when making predictions, significantly improving language understanding and
generation tasks. Building on this foundation, the Transformer architecture was proposed by
Vaswani et al. in 2017 [39]. This architecture has become the backbone of most contemporary
LLMs, as it efficiently processes sequences of data, capturing long-range dependencies without
being hindered by sequential processing limitations.

8

One of the first major breakthroughs utilizing the Transformer architecture was BERT (Bidi-
rectional Encoder Representations from Transformers), developed by Devlin et al. in 2019 [40].
BERT’s bi-directional understanding allowed it to capture the context of words from both
directions, which improved the accuracy of various NLP tasks. Following this, the Generative
Pre-trained Transformer (GPT) series, initiated by OpenAI with the original GPT model in 2018
[41], further pushed the boundaries. Subsequent iterations, including GPT-2 [42], GPT-3 [43],
and the most current GPT-4 [44], have continued to enhance performance by scaling model
size, data, and training techniques.

In addition to OpenAI’s contributions, other significant models have emerged, such as Claude,
DeepSeek-R1 and the Llama series (1 through 3) [45]–[47]. The proliferation of LLMs has
sparked an active discourse about their capabilities, applications, and implications in various
fields.

2.2.1. State-of-the-art GPTs

User-facing LLMs are generally categorized between closed-source and open-source models.
Closed-source LLMs like ChatGPT, Claude, and Gemini [45], [48], [49] represent commercially
developed systems often optimized for specific tasks without public access to their underlying
weights. In contrast, open-source models2, including the Llama series [47] and Deepseek
[46], provide researchers and practitioners with access to model weights, allowing for greater
transparency and adaptability.

2.2.2. Prompting

Interaction with LLMs typically occurs through chat-like interfaces where the user gives queries
and tasks for the LLM to answer and complete, a process commonly referred to as prompting. A
critical aspect of effective engagement with LLMs is the usage of different prompting strategies,
which can significantly influence the quality and relevance of the generated outputs. Various
approaches to prompting have been developed and studied, including zero-shot and few-shot
prompting. In zero-shot prompting, the model is expected to perform the given task without any
provided examples, while in few-shot prompting, the user offers a limited number of examples
to guide the model’s responses [43].

To enhance performance on more complex tasks, several advanced prompting techniques have
emerged. One notable strategy is the Chain of Thought approach (COT) [50], which entails
presenting the model with sample thought processes for solving a given task. This method
encourages the model to generate more coherent and logical reasoning by mimicking human-
like cognitive pathways. A more refined but complex variant of this approach is the Tree

2The term “open-source” models is somewhat misleading, since these are better termed as open-weights models.
While their weights are publicly available, their training data and underlying code are often proprietary. This
terminology reflects community usage but fails to capture the limitations of transparency and accessibility
inherent in these models.

9

of Thoughts technique [51], which enables the LLM to explore multiple lines of reasoning
concurrently, thereby facilitating the selection of the most promising train of thought for further
exploration.

In addition to these cognitive strategies, Retrieval-Augmented Generation (RAG) [52] is another
innovative technique that enhances the model’s capacity to provide accurate information
by incorporating external knowledge not present in its training dataset. RAG operates by
integrating the LLM with an external storage system—often a vector store containing relevant
documents—that the model can query in real-time. This allows the LLM to pull up pertinent
and/or proprietary information in response to user queries, resulting in more comprehensive
and accurate answers.

Moreover, the ReAct framework [53], which stands for Reasoning and Acting, empowers LLMs
by granting access to external tools. This capability allows LLM instances to function as
intelligent agents that can interact meaningfully with their environment through user-defined
functions. For instance, a ReAct tool could be a function that returns a weather forecast based
on the user’s current location. In this scenario, the LLM can provide accurate and truthful
predictions, thereby mitigating risks associated with hallucinated responses.

2.2.3. LLMs for Coding

The impact of LLMs in software development in recent years is apparent, with hundreds of
LLM-assistance extensions and Integrated Development Environments (IDEs) being published.
Notable instances include tools like GitHub Copilot and IDEs such as Cursor [54], [55], which
leverage LLM capabilities to provide developers with coding suggestions, auto-completions, and
even real-time debugging assistance. Such innovations have introduced a layer of interaction
that enhances productivity and fosters a more intuitive coding experience. Additionally, more
and more LLMs are now specifically trained for usage in code-generation tasks [56]–[58].

One exemplary product of this innovation is vibecoding and the no-code movement, which
describe the development of software by only prompting and tasking an LLM, i.e. without
any actual programming required by the user. This constitutes a showcase of how LLMs can
be used to elevate the coding experience by supporting developers as they navigate complex
programming tasks [59]. By analyzing the context of the code being written, these sophisticated
models can provide contextualized insights and relevant snippets, effectively streamlining the
development process. Developers can benefit from reduced cognitive load, as they receive
suggestions that not only cater to immediate coding needs but also promote adherence to best
practices and coding standards.

Despite these advancements, it is crucial to recognize the inherent limitations of LLMs when
applied to software development. While they can help in many aspects of coding, they are not
immune to generating erroneous outputs—a phenomenon often referred to as “hallucination”
[60]. Hallucinations occur when LLMs produce information that is unfounded or inaccurate,
which can stem from several factors, including the limitations of their training data and the
constrained context window within which they operate. As LLMs generate code suggestions

10

based on the patterns learned from vast datasets, they may inadvertently propose solutions
that do not align with the specific requirements of a task or that utilize outdated programming
paradigms.

Moreover, the challenge of limited context windows can lead to suboptimal suggestions [61].
LLMs generally process a fixed amount of text when generating responses, which can impact
their ability to fully grasp the nuances of complex coding scenarios. This may result in outputs
that lack the necessary depth and specificity required for successful implementation. As a
consequence, developers must exercise caution and critically evaluate the suggestions offered
by these models, as reliance on them without due diligence could lead to the introduction of
bugs or other issues in the code.

2.2.4. LLMs for Fuzzing

In the domain of fuzzing, recent research has explored the application of LLMs primarily along
two axes: employing LLMs to generate seeds and inputs for the program under test [62]–[65]
and leveraging them to generate the fuzz driver itself (Chapter 5). This thesis focuses on the
latter, recognizing that while using LLMs for seed generation offers certain advantages, the
challenge of automating harness generation represents a deeper and more meaningful frontier.
Significant limitations such as restricted context windows and the propensity for LLMs to
hallucinate remain central concerns in this area [60], [61].

The process of constructing a fuzzing harness is inherently complex, demanding a profound
understanding of the target library and the nuanced interactions among its components. Achiev-
ing this level of comprehension is often beyond the reach of LLMs when deployed in isolation.
Empirical evidence by Jiang et al. [66] demonstrates that zero-shot harness generation with
LLMs is both ineffective and prone to significant errors. Specifically, LLMs tend to rely heavily
on patterns encountered during training, which leads to the erroneous invocation of APIs,
particularly when their context window is pushed to its limits. This over-reliance on training
data exacerbates the risk of hallucination, compounding the challenge of generating correct
and robust fuzz drivers.

Compounding this issue is the inherent risk introduced by error-prone code synthesized by
LLMs. In the context of fuzzing, a fundamental requirement is the clear attribution of observed
failures: developers must be confident that detected crashes stem from vulnerabilities in the
tested software rather than flaws or bugs inadvertently introduced by the harness. This necessity
imposes an additional verification burden, increasing developers’ cognitive load and diverting
attention from the primary goal of meaningful software evaluation and improvement.

Enhancing the reliability of LLM-generated harnesses thus necessitates systematic and pro-
grammatic evaluation and validation of generated artifacts [67]. Such validation involves
implementing structured techniques to rigorously assess both the accuracy and robustness
of the code, confirming that it interacts correctly with the relevant software components and
behaves as intended. This approach aligns with the emerging framework of Neurosymbolic
AI (Section 2.3), which integrates the statistical learning capabilities of neural networks with

11

the rigor and precision of symbolic reasoning. By leveraging the strengths of both paradigms,
neuroscience-inspired symbolic methods [68] may offer pathways toward more reliable and
effective LLM-generated fuzzing harnesses, facilitating a smoother integration of automated
testing practices into established software development pipelines [69], [70].

2.3. Neurosymbolic AI

Neurosymbolic AI represents a groundbreaking fusion of neural network methodologies with
symbolic execution techniques and tools, providing a multi-faceted approach to overcoming
the inherent limitations of traditional AI paradigms [71], [72]. This innovative synthesis seeks
to combine the strengths of both neural networks, which excel in pattern recognition and data-
driven learning, and symbolic systems, which offer structured reasoning and interpretability.
By integrating these two approaches, neurosymbolic AI aims to create cognitive models that
are not only more accurate but also more robust in problem-solving contexts.

At its core, Neurosymbolic AI facilitates the development of AI systems that are capable of
understanding and interpreting feedback in real-world scenarios [73]. This characteristic
is particularly significant in the current landscape of artificial intelligence, where LLMs are
predominant. In this context, Neurosymbolic AI is increasingly viewed as a critical solution
to pressing issues related to explainability, attribution, and reliability in AI systems [67], [74].
These challenges are essential for ensuring that AI systems can be trusted and effectively utilized
in various applications, from business to healthcare.

The burgeoning field of neurosymbolic AI is still in its nascent stages, with ongoing research and
development actively exploring its potential to enhance attribution methodologies within large
language models. By addressing these critical challenges, Neurosymbolic AI can significantly
contribute to the broader landscape of trustworthy AI systems, allowing for more transparent
and accountable decision-making processes [67], [71], [74].

Moreover, the application of neurosymbolic AI within the domain of fuzzing is gaining traction,
paving the way for innovative explorations. This integration of LLMs with symbolic systems
opens up new avenues for research. Currently, there are only a limited number of tools that
support such hybrid approaches (Chapter 5). Among these, OverHAuL constitutes a Neuro[Sym-
bolic] tool, as classified by Henry Kautz’s taxonomy [75], [76]. This means that the neural
model—specifically the LLM—can leverage symbolic reasoning tools—in this case a source
code explorer (Section 3.6)—to augment its reasoning capabilities. This symbiotic relationship
enhances the overall efficacy and versatility of LLMs for fuzzing harnesses generation, demon-
strating the profound potential held by the fusion of neural and symbolic methodologies.

12

3. OverHAuL’s Design

In this thesis we present OverHAuL (Harness Automation with LLMs), a neurosymbolic AI
tool that automatically generates fuzzing harnesses for C libraries through LLM agents. In
its core, OverHAuL is comprised by a triplet of LLM ReAct agents [53]—each with its own
responsibility and scope—and a codebase oracle reserving the given project’s analyzed source
code. An overview of OverHAuL’s process is presented in Figure 3.1, detailed in Section 3.2.
The objective of OverHAuL is to streamline the process of fuzz testing for unfuzzed C libraries.
Given a link to a git repository [77] of a C library, OverHAuL automatically generates a new
fuzzing harness specifically designed for the project. In addition to the harness, it produces a
compilation script to facilitate building the harness, generates a representative input that can
trigger crashes, and logs the output from the executed harness.

Figure 3.1.: Overview of OverHAuL’s automatic harnessing process.

OverHAuL utilizes autonomous ReAct agents which inspect and analyze the project’s source
code. The latter is stored and interacted with as a set of text embeddings [78], kept in a vector
store. Both approaches are, to the best of our knowledge, novel in the field of automatic fuzzing

13

harnesses generation. OverHAuL also implements an evaluation component that assesses in
real-time all generated harnesses, making the results tenable, reproducible and well-founded.
Ideally, this methodology provides a comprehensive and systematic framework for identifying
previously unknown software vulnerabilities in projects that have not yet been fuzz tested.

As detailed in Section 5.4, OverHAuL does not expect and depend on the existence of client
code or unit tests [10]–[12] nor does it require any preexisting fuzzing harnesses [9] or any
documentation present [79]. Also importantly, OverHAuL is decoupled from other fuzzing
projects, thus lowering the barrier to entry for new projects [9], [80]. Lastly, the user isn’t
mandated to manually specify the function which the harness-to-be-generated must fuzz.
Instead, OverHAuL’s agents examine and assess the provided codebase, choosing after evaluation
the most optimal target function.

Finally, OverHAuL excels in its user-friendliness, as it constitutes a simple and easily-installable
Python package with minimal external dependencies—only real dependency being Clang, a
prevalent compiler available across all primary operating systems. This contrasts most other
comparable systems, which are typically characterized by their limited documentation, lack of
extensive testing, and a focus primarily on experimental functionality.1

3.1. Installation and Usage

The source code of OverHAuL is available in https://github.com/kchousos/OverHAuL.
OverHAuL can be installed by cloning the git repository locally, creating and enabling a
Python3.10 virtual environment [82] (optional, but recommended) and installing it inside the
environment using Python’s PIP package installer [83], like in Listing 3.1.

To use OverHAuL, you need to provide a secret key for using OpenAI’s API service. This key
can be either stored in a .env file in the root directory or exported in the shell environment:

1 $ echo "OPENAI_API_KEY=<API-key-here>" >> .env

2 # OR

3 $ export OPENAI_API_KEY=<API-key-here>

Once these preliminary steps are completed, OverHAuL can be executed. The primary argument
required by OverHAuL is the repository link of the library that is to be fuzzed. Additionally,
users have the option to specify certain command-line flags, which allow them to control the
checked-out commit of the cloned project, select the OpenAI LLM model from a predefined
list, define specific file patterns for OverHAuL to search for, and determine the directory in
which the project will be cloned. For a concrete example, we will use OverHAuL to create a

1For instance, both fuzz-introspector and OSS-Fuzz-Gen are integrated by design to the OSS-Fuzz platform [9],
[80], [81]. When utilized outside this environment, they require users to operate directly from the project’s
root directory and interact with the tools primarily through unrefined Python scripts, thereby limiting their
accessibility and ease of use.

14

https://github.com/kchousos/OverHAuL

new fuzzing harness for dvhar’s dateparsing C library and specify the LLM model to OpenAI’s
gpt-4.1 model. The resulting command and its output is presented in Figure 3.2.

Figure 3.2.: A successful execution of OverHAuL, harnessing the “dateparse” library using OpenAI’s
gpt-4.1 model. Debug statements are printed to showcase the queries of the LLM agents to the
codebase oracle (Section 3.3.3).

In this example, the dateparse repository is cloned into the ./output/dateparse directory, which
is relative to the root directory of OverHAuL. Following a successful execution, the project’s
directory will contain a new folder named harnesses, which will house all the generated harnesses
formatted as harness_n.c—where 𝑛 ranges from 1 to 𝑁 −1, with 𝑁 representing the total number
of harnesses produced. The most recent and verifiably correct harness will be designated
simply as harness.c. Additionally, the dateparse folder will include an executable script named
overhaul.sh, which contains the compilation command necessary for the harness. A log file
titled harness.out will also be present, documenting the output from the latest harness execution.
Lastly and most importantly, there will be at least one non-empty crash file included, serving
as a witness to the harness’s correctness. In the following sections, the intermediary steps
between invocation and completion are disected and analyzed. The dateparse project is used as
a running example.

3.2. Architecture

OverHAuL can be compartmentalized in three stages: First, the project analysis stage (Sec-
tion 3.2.1), the harness creation stage (Section 3.2.2) and the harness evaluation stage (Sec-
tion 3.2.3).

3.2.1. Project Analysis

In the project analysis stage (steps A.1–A.4), dateparse is ran through a static analysis tool
named Flawfinder [84] and is sliced into function-level chunks, which are stored in a vector
store. The results of this stage are a static analysis report and a codebase oracle, i.e. a vector store
containing embeddings of function-level code chunks. Both resources are later available to the
LLM agents. Flawfinder is executed with the dateparse directory as input and is responsible for
the static analysis report. This report is considered a meaningful resource, since it provides
the LLM agent responsible with the harness creation with some starting points to explore,

15

https://github.com/dvhar/dateparse

regarding the occurrences of potentially vulnerable functions and/or unsafe code practices. Part
of dateparse’s static analysis report is shown in Listing 3.2.

The codebase oracle is created in the following manner: The source code is first chunked in
function-level pieces by traversing the code’s Abstract Syntax Tree (AST) through Clang. Each
chunk is represented by an object with the function’s signature, the corresponding filepath and
the function’s body (see Listing 3.3). Afterwards, each function body is turned into a vector
embedding through an embedding model. Each embedding is stored in the vector store. This
structure is created and used for easier and more semantically meaningful code retrieval, and to
also combat context window limitations present in LLMs.

3.2.2. Harness Creation

Second is the harness creation stage (steps B.1–B.2). In this part, a “generator” ReAct LLM agent
is tasked with creating a fuzzing harness for the project. The agent has access to a querying
tool that acts as an interface between it and the codebase oracle. When the agent makes queries
like “functions containing strcpy()”, the querying tool turns the question into an embedding
and through similarity search returns the top 𝑘 = 5 most similar results—in this case, functions
of the project. With this approach, the agent is able to explore the codebase semantically and
pinpoint potentially vulnerable usage patterns easily.

The harness generated by the agent is then compiled using Clang and linked with the Address-
Sanitizer, LeakSanitizer, and UndefinedBehaviorSanitizer. The compilation command used is
generated programmatically, according to the rules described in Section 3.5. If the compilation
fails for any reason, e.g. a missing header include, then the generated faulty harness and its
compilation output are passed to a new “fixer” agent tasked with repairing any errors in the
harness (step B.2.a). This results in a newly generated harness, presumably free from the previ-
ously shown flaws. This process is iterated until a compilable harness has been obtained. After
success, a script is also exported in the project directory, containing the generated compilation
command. Dateparse’s compilation command is shown in Listing 3.4.

3.2.3. Harness Evaluation

Third comes the evaluation stage (steps C.1–C.3). During this step, the compiled harness is
executed and its results evaluated. Namely, a generated harness passes the evaluation phase if
and only if:

1. The harness has no memory leaks during its execution

This is inferred by the existence of leak-<hash> files.

2. A new testcase was created or the harness executed for at least MIN_EXECUTION_TIME (i.e. did
not crash on its own)

When a crash happens, and thus a testcase is created, it results in a crash-<hash> file.

16

3. The created testcase is not empty

This is examined through xxd’s output given the crash-file.

Similarly to the second stage’s compilation phase (steps B.2–B.2.a), if a harness does not pass
the evaluation for whatever reason it is sent to an “improver” agent. This agent is instructed
to refine it based on its code and cause of failing the evaluation. This process is also iterative.
If any of the improved harness versions fail to compile, the aforementioned “fixer” agent is
utilized again (steps C.2–C.2.a). All produced crash files and the harness execution output are
saved in the project’s directory. An evaluation-passing harness generated for the dateparse
project is presented in Listing 3.5, along with the associated crash input and execution output
displayed in Listing 3.6 and Listing 3.7, respectively.

3.3. OverHAuL Techniques

The fundamental techniques that distinguish OverHAuL in its approach and enhance its ef-
fectiveness in achieving its objectives are: The implementation of an iterative feedback loop
between the LLM agents, the distribution of responsibility across a triplet of distinct agents and
the employment of a “codebase oracle” for interacting with the given project’s source code.

3.3.1. Feedback Loop

The initial generated harness produced by OverHAuL is unlikely to be successful from the get-go.
The iterative feedback loop implemented facilitates its enhancement, enabling the harness to be
tested under real-world conditions and subsequently refined based on the results of these tests.
This approach mirrors the typical workflow employed by developers in the process of creating
and optimizing fuzz targets.

In this iterative framework, the development process continues until either an acceptable
and functional harness is realized or the defined iteration budget is exhausted. The iteration
budget 𝑁 = 10 is initialized at the onset of OverHAuL’s execution and is shared between both
the compilation and evaluation phases of the harness development process. This means that
the iteration budget is decremented each time a dashed arrow in the flowchart illustrated in
Figure 3.1 is followed. Such an approach allows for targeted improvements while maintaining
oversight of resource allocation throughout the harness development cycle.

3.3.2. React Agents Triplet

An integral design decision in our framework is the implementation of each agent as a distinct
LLM instance, although all utilizing the same underlying model. This approach yields several
advantages, particularly in the context of maintaining separate and independent contexts for
each agent throughout each OverHAuL run.

17

By assigning individual contexts to the agents, we enable a broader exploration of possibilities
during each run. For instance, the “improver” agent can investigate alternative pathways or
strategies that the “generator” agent may have potentially overlooked or internally deemed
inadequate inaccurately. This separation not only fosters a more diverse range of solutions but
also enhances the overall robustness of the system by allowing for iterative refinement based
on each agent’s unique insights.

Furthermore, this design choice effectively addresses the limitations imposed by context window
sizes. By distributing the “cognitive” load across multiple agents, we can manage and mitigate the
risks associated with exceeding these constraints. As a result, this architecture promotes efficient
utilization of available resources while maximizing the potential for innovative outcomes in
multi-agent interactions. This layered approach ultimately contributes to a more dynamic and
exploratory research environment, facilitating a comprehensive examination of the problem
space.

3.3.3. Codebase Oracle

The third central technique employed is the creation and utilization of a codebase oracle, which
is effectively realized through a vector store. This oracle is designed to contain the various
functions within the project, enabling it to return the most semantically similar functions upon
querying it. Such an approach serves to address the inherent challenges associated with code
exploration difficulties faced by LLM agents, particularly in relation to their limited context
window.

By structuring the codebase into chunks at the level of individual functions, LLM agents
can engage with the code more effectively by focusing on its functional components. This
methodology not only allows for a more nuanced understanding of the codebase but also ensures
that the responses generated do not consume an excessive portion of the limited context window
available to the agents. In contrast, if the codebase were organized and queried at the file level,
the chunks of information would inevitably become larger, leading to an increase in noise and a
dilution of meaningful content in each chunk [85]. Given the constant size of the embeddings
used in processing, each progressively larger chunk would be less semantically significant,
ultimately compromising the quality of the retrieval process.

Defining the function as the primary unit of analysis represents the most proportionate bal-
ance between the size of the code segments and their semantic significance. It serves as the
ideal “zoom-in” level for the exploration of code, allowing for greater clarity and precision in
understanding the functionality of individual code segments. This same principle is widely
recognized in the training of code-specific LLMs, where a function-level approach has been
shown to enhance performance and comprehension [86]. By adopting this methodology, we aim
to foster a more robust interaction between LLM agents and the underlying codebase, ultimately
facilitating a more effective and efficient exploration process.

18

3.4. High-Level Algorithm

A pseudocode version of OverHAuL’s main function is shown in Algorithm 3.1, illustrating
the workflow depicted in Figure 3.1 and incorporating the methods explained in Sections
3.2 and 3.3. Notably, within this algorithm, the HarnessAgents() function acts as an interface
that connects the “generator”, “fixer”, and “improver” LLM agents. The specific agent utilized
during each invocation of HarnessAgents() depends on the function’s arguments. As a result, the
ℎ𝑎𝑟𝑛𝑒𝑠𝑠 variable encapsulates all generated, fixed, or improved harnesses. Since both the “fixer”
and “generator” agents are accessed through the HarnessAgents() function, the related continue

statements correspond to the next iterations of fixing or improving a harness. This design
choice streamlines the overall algorithm, making it more abstract and easier to comprehend.

Algorithm 3.1 OverHAuL

Require: 𝑟𝑒𝑝𝑜𝑠𝑖𝑡𝑜𝑟𝑦
Ensure: ℎ𝑎𝑟𝑛𝑒𝑠𝑠, 𝑐𝑜𝑚𝑝𝑖𝑙𝑎𝑡𝑖𝑜𝑛_𝑠𝑐𝑟 𝑖𝑝𝑡, 𝑐𝑟𝑎𝑠ℎ_𝑖𝑛𝑝𝑢𝑡, 𝑒𝑥𝑒𝑐𝑢𝑡𝑖𝑜𝑛_𝑙𝑜𝑔

1: 𝑝𝑎𝑡ℎ ← RepoClone(𝑟𝑒𝑝𝑜𝑠𝑖𝑡𝑜𝑟𝑦)
2: 𝑟𝑒𝑝𝑜𝑟 𝑡 ← StaticAnalysis(𝑝𝑎𝑡ℎ)
3: 𝑣𝑒𝑐𝑡𝑜𝑟_𝑠𝑡𝑜𝑟𝑒 ← CreateOracle(𝑝𝑎𝑡ℎ)
4: 𝑎𝑐𝑐𝑒𝑝𝑡𝑎𝑏𝑙𝑒 ← False
5: 𝑐𝑜𝑚𝑝𝑖𝑙𝑒𝑑 ← False
6: 𝑒𝑟 𝑟𝑜𝑟 ← None
7: 𝑣 𝑖𝑜𝑙𝑎𝑡𝑖𝑜𝑛 ← None
8: 𝑜𝑢𝑡𝑝𝑢𝑡 ← None
9: for 𝑖 = 1 to 𝑀𝐴𝑋_𝐼 𝑇𝐸𝑅𝐴𝑇 𝐼𝑂𝑁𝑆 do

10: ℎ𝑎𝑟𝑛𝑒𝑠𝑠 ← HarnessAgents(𝑝𝑎𝑡ℎ, 𝑟𝑒𝑝𝑜𝑟 𝑡, 𝑣𝑒𝑐𝑡𝑜𝑟_𝑠𝑡𝑜𝑟𝑒, 𝑒𝑟 𝑟𝑜𝑟 , 𝑣 𝑖𝑜𝑙𝑎𝑡𝑖𝑜𝑛, 𝑜𝑢𝑡𝑝𝑢𝑡)
11: 𝑒𝑟 𝑟𝑜𝑟 , 𝑐𝑜𝑚𝑝𝑖𝑙𝑒𝑑 ← BuildHarness(𝑝𝑎𝑡ℎ, ℎ𝑎𝑟𝑛𝑒𝑠𝑠)
12: if ¬𝑐𝑜𝑚𝑝𝑖𝑙𝑒𝑑 then
13: continue ▷ Fix harness
14: end if
15: 𝑜𝑢𝑡𝑝𝑢𝑡, 𝑎𝑐𝑐𝑒𝑝𝑡𝑒𝑑 ←EvaluateHarness(𝑝𝑎𝑡ℎ, ℎ𝑎𝑟𝑛𝑒𝑠𝑠)
16: if ¬𝑎𝑐𝑐𝑒𝑝𝑡𝑒𝑑 then
17: continue ▷ Improve harness
18: else
19: 𝑎𝑐𝑐𝑒𝑝𝑡𝑎𝑏𝑙𝑒 ← True
20: break
21: end if
22: end for
23: return 𝑐𝑜𝑚𝑝𝑖𝑙𝑒𝑑 ∧ 𝑎𝑐𝑐𝑒𝑝𝑡𝑎𝑏𝑙𝑒

19

3.5. Scope

Currently, OverHAuL is designed to generate new harnesses specifically for medium-sized C
libraries. Given the inherent complexity of dealing with C++ projects, this is not a feature yet
supported within the system.

The compilation command utilized by OverHAuL is created programmatically. It incorporates
the root directory along with all subdirectories that conform to a predefined set of common
naming conventions. Additionally, the compilation process uses all C source files identified
within these directories. Crucially, it is important that no main() function is present in any of
the files to ensure successful compilation. For this reason any files or directories that include
“test”, “main”, “example”, “demo”, or “benchmark” in their paths are systematically excluded
from the compilation process. This exclusion also decreases the “noise” in the oracle, as these
files do not constitute part of the core library and would therefore not contain any functions
meaningful to the LLM agents.

Lastly, No support for build systems such as Make or CMake [87], [88] is yet implemented. Such
functionality would exponentially increase the complexity of the build step and is beyond the
scope of this thesis.

3.6. Implementation

In creating the codebase oracle, we employ the “libclang” Python package [89] to slice functions
based on the AST capability provided by Clang. As detailed in Section 3.3.3, the intermediate
output consists of a list of Python dictionaries, with each dictionary storing a function’s body,
signature, and corresponding file path. Each chunk of function code is then converted into an
embedding using OpenAI’s “text-embedding-3-small” model [90] and stored in a FAISS vector
store index [91]. This index is mapped to a metadata structure that contains the aforementioned
function data—specifically the actual function body, signature, and file path. When a search is
conducted on the index, the results returned are the embeddings. The responses that the LLM
agent receives are derived from the corresponding metadata entries of each embedding.

All LLM agents and components are developed using the DSPy library, a declarative Python
framework for LLM programming created by Stanford’s NLP research team [92]. DSPy offers
built-in modules and abstractions that facilitate the composition of LLMs and prompting tech-
niques, such as Chain of Thought and ReAct (Listing 3.8). Each agent within OverHAuL is an
instance of DSPy’s ReAct module [93], accompanied by a custom Signature [94]—displayed in
Appendix C. DSPy was selected over other contemporary LLM libraries, such as LangChain
and Llamaindex [95], [96], because of its user-friendliness, logical abstractions, and efficient
development process—qualities that are often lacking in these alternative libraries [97]–[99].

Repository cloning is executed using the --depth 1 flag to minimize disk storage usage and
reduce the size of artifacts.

20

The current implementation of OverHAuL sits at 1,254 source lines of Python code.

3.6.1. Development Tools

The development of OverHAuL incorporates a variety of tools aimed at enhancing functionality
and efficiency. Notably, “uv” is a Python package and project manager written in Rust that serves
as a replacement for Poetry. Additionally, “Ruff,” a code linter and formatter also developed in
Rust, contributes to code quality by enforcing consistent formatting standards. The project also
employs “MyPy,” the widely-used static type checker for Python, to ensure type correctness.
Testing is facilitated through “PyTest,” a robust Python testing framework. Lastly, “pdoc” is
utilized as a Static Site Generator (SSG) to automate the creation of API documentation2 [100]–
[104].

3.6.2. Reproducibility

OverHAuL’s source code is available at https://github.com/kchousos/OverHAuL. Each
benchmark run was conducted within the framework of a GitHub Actions workflow, resulting
in a detailed summary accompanied by an artifact containing all cloned repositories. These
artifacts are the compressed result directories described in Section 4.1.1 and provide the essential
components necessary for the reproducibility each project’s results, as described in Section 3.1.
All benchmark runs can be conveniently accessed at https://github.com/kchousos/OverHAuL/a
ctions/workflows/benchmarks.yml.

2Available at https://kchousos.github.io/OverHAuL/.

21

https://github.com/kchousos/OverHAuL
https://github.com/kchousos/OverHAuL/actions/workflows/benchmarks.yml
https://github.com/kchousos/OverHAuL/actions/workflows/benchmarks.yml
https://kchousos.github.io/OverHAuL/

Listing 3.1 OverHAuL’s straightforward installation process.

1 $ git clone https://github.com/kchousos/overhaul; cd overhaul

2 ...

3 $ python3.10 -m venv .venv

4 $ source ./.venv/bin/activate

5 $ pip install .

6 ...

7 $ overhaul --help

8 usage: overhaul [-h] [-c COMMIT] [-m MODEL] [-f FILES [FILES ...]]

9 [-o OUTPUT_DIR] repo

10

11 Generate fuzzing harnesses for C/C++ projects

12

13 positional arguments:

14 repo Link of a project's git repo, for which to generate

15 a harness.

16

17 options:

18 -h, --help show this help message and exit

19 -c COMMIT, --commit COMMIT

20 A specific commit of the project to check out

21 -m MODEL, --model MODEL

22 LLM model to be used. Available: o3-mini, o3, gpt-4o,

23 gpt-4o-mini, gpt-4.1, gpt-4.1-mini, gpt-3.5-turbo, gpt-4

24 -f FILES [FILES ...], --files FILES [FILES ...]

25 File patterns to include in analysis (e.g. *.c *.h)

26 -o OUTPUT_DIR, --output-dir OUTPUT_DIR

27 Directory to clone the project into. Defaults to "output"

28 $

22

Listing 3.2 Static analysis report (Flawfinder output) of dateparse.

1 Flawfinder version 2.0.19, (C) 2001-2019 David A. Wheeler.

2 Number of rules (primarily dangerous function names) in C/C++ ruleset: 222

3 Examining ./dateparse.c

4 Examining ./dateparse.h

5 Examining ./test.c

6

7 FINAL RESULTS:

8

9 ./dateparse.c:405: [4] (buffer) strcpy:

10 Does not check for buffer overflows when copying to destination [MS-banned]

11 (CWE-120). Consider using snprintf, strcpy_s, or strlcpy (warning: strncpy

12 easily misused).

13

14

15

16 ./dateparse.c:2192: [1] (buffer) strlen:

17 Does not handle strings that are not \0-terminated; if given one it may

18 perform an over-read (it could cause a crash if unprotected) (CWE-126).

19

20 ANALYSIS SUMMARY:

21

22 Hits = 64

23 Lines analyzed = 2719 in approximately 0.04 seconds (61234 lines/second)

24 Physical Source Lines of Code (SLOC) = 1966

25 Hits@level = [0] 15 [1] 28 [2] 31 [3] 0 [4] 5 [5] 0

26 Hits@level+ = [0+] 79 [1+] 64 [2+] 36 [3+] 5 [4+] 5 [5+] 0

27 Hits/KSLOC@level+ = [0+] 40.1831 [1+] 32.5534 [2+] 18.3113 [3+] 2.54323

28 [4+] 2.54323 [5+] 0

29 Dot directories skipped = 1 (--followdotdir overrides)

30 Minimum risk level = 1

31

32 Not every hit is necessarily a security vulnerability.

33 You can inhibit a report by adding a comment in this form:

34 // flawfinder: ignore

35 Make *sure* it's a false positive!

36 You can use the option --neverignore to show these.

37

38 There may be other security vulnerabilities; review your code!

39 See 'Secure Programming HOWTO'

40 (https://dwheeler.com/secure-programs) for more information.

23

Listing 3.3 Sample chunks contained in dateparse’s codebase oracle.

1 File: dateparse/dateparse.c

2 Signature: void (struct parser *, int, int)

3 Code:

4 static void setOffset(struct parser* p, int i, int len){

5 strncpy(p->offsetbuf, p->datestr+i, len);

6 p->offsetbuf[len] = 0;

7 }

8

9

10 File: dateparse/dateparse.c

11 Signature: void (struct parser *, char *)

12 Code:

13 static void setFullMonth(struct parser* p, char* month){

14 strcpy(p->mobuf, month);

15 }

16

17

18 File: dateparse/dateparse.c

19 Signature: int (const char *, long long *, int *, int)

20 Code:

21 int dateparse(const char* datestr, date_t* t, int *offset, int stringlen){

22 struct parser p;

23 *t = 0;

24 if (!stringlen)

25 stringlen = strlen(datestr);

26 if (parseTime(datestr, &p, stringlen))

27 return -1;

28 return parse(&p, t, offset);

29 }

Listing 3.4 OverHAuL’s generated compilation command for dateparse.

1 # cat ./overhaul.sh

2 clang -g -fsanitize=fuzzer,address,undefined harnesses/harness.c -I .

3 dateparse.c -o harness

24

Listing 3.5 A crash-finding harness for dateparse, generated through OverHAuL (some com-
ments were removed).

1 #include <stdlib.h>

2 #include <string.h>

3 #include <stdint.h>

4 #include "dateparse.h"

5

6 // ...

7 struct parser {

8 char mobuf[16];

9 };

10

11 // ...

12 static void setFullMonth(struct parser* p, char* month){

13 strcpy(p->mobuf, month);

14 }

15

16 int LLVMFuzzerTestOneInput(const uint8_t *data, size_t size) {

17 // Allocate a parser instance on the heap.

18 struct parser *p = (struct parser*)malloc(sizeof(struct parser));

19 if (!p) {

20 return 0;

21 }

22 // Initialize parser with zeros.

23 memset(p, 0, sizeof(struct parser));

24 // Prepare month string input: ensure null-terminated string for strcpy.

25 char *month = (char*)malloc(size + 1);

26 if (!month) {

27 free(p);

28 return 0;

29 }

30 memcpy(month, data, size);

31 month[size] = '\0'; // Null terminate to avoid overread in strcpy.

32 // Call the vulnerable function with fuzzed month string.

33 setFullMonth(p, month);

34 // Cleanup

35 free(month);

36 free(p);

37 return 0;

38 }

25

Listing 3.6 An input string that crashes the harness in Listing 3.5. What is shown is its xxd

output.

00000000: 315e 5e5e 5e5e 5e5e 5e5e 5e5e 5e5e 5e5e 1^^^^^^^^^^^^^^^

00000010: 0a .

26

Listing 3.7 The output of the harness in Listing 3.5 when executed with Listing 3.6 as input.

1 INFO: Running with entropic power schedule (0xFF, 100).

2 INFO: Seed: 2365219758

3 INFO: Loaded 1 modules (3723 inline 8-bit counters): 3723 [0x67ccc0,

4 0x67db4b),

5 INFO: Loaded 1 PC tables (3723 PCs): 3723 [0x618d40,0x6275f0),

6 ./harness: Running 1 inputs 1 time(s) each.

7 Running: crash-7fd6f4dd5d39420d6f7887ff995b4e855ae90c16

8 ===

9 ==10973==ERROR: AddressSanitizer: heap-buffer-overflow on address

10 0x7bcece9e00a0 at pc 0x000000526c0e bp 0x7fff3dc0aa20 sp 0x7fff3dc0a1d8

11 WRITE of size 18 at 0x7bcece9e00a0 thread T0

12 #0 0x000000526c0d in strcpy

13 (/home/kchou/Bin/Repos/kchousos/OverHAuL/output/dateparse/harness

14 +0x526c0d) (BuildId: d658684b8726dc7e8e768089710d13c96cfc81f0)

15 #1 0x000000585555 in setFullMonth

16 /home/kchou/Bin/Repos/kchousos/OverHAuL/output/dateparse/harnesses

17 /harness.c:18:2

18 #2 0x0000005853fd in LLVMFuzzerTestOneInput

19 /home/kchou/Bin/Repos/kchousos/OverHAuL/output/dateparse/harnesses

20 /harness.c:41:2

21 ...

22 SUMMARY: AddressSanitizer: heap-buffer-overflow

23 (/home/kchou/Bin/Repos/kchousos/OverHAuL/output/dateparse/harness

24 +0x526c0d) (BuildId: d658684b8726dc7e8e768089710d13c96cfc81f0) in

25 strcpy

26 Shadow bytes around the buggy address:

27 0x7bcece9dfe00: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

28 0x7bcece9dfe80: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

29 0x7bcece9dff00: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

30 0x7bcece9dff80: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

31 0x7bcece9e0000: fa fa 00 00 fa fa 00 fa fa fa 00 fa fa fa 00 fa

32 =>0x7bcece9e0080: fa fa 00 00[fa]fa fa fa fa fa fa fa fa fa fa fa

33 0x7bcece9e0100: fa fa fa fa fa fa fa fa fa fa fa fa fa fa fa fa

34 0x7bcece9e0180: fa fa fa fa fa fa fa fa fa fa fa fa fa fa fa fa

35 0x7bcece9e0200: fa fa fa fa fa fa fa fa fa fa fa fa fa fa fa fa

36 0x7bcece9e0280: fa fa fa fa fa fa fa fa fa fa fa fa fa fa fa fa

37 0x7bcece9e0300: fa fa fa fa fa fa fa fa fa fa fa fa fa fa fa fa

38 Shadow byte legend (one shadow byte represents 8 application bytes):

27

Listing 3.8 Sample DSPy program.

1 import dspy

2 lm = dspy.LM('openai/gpt-4o-mini', api_key='YOUR_OPENAI_API_KEY')

3 dspy.configure(lm=lm)

4

5 math = dspy.ChainOfThought("question -> answer: float")

6 math(question=(

7 "Two dice are tossed. What is the probability that the sum equals two?"

8))

28

4. Evaluation

To thoroughly assess the performance and effectiveness of OverHAuL, we established four
research questions to direct our investigative efforts. These questions are designed to provide a
structured framework for our inquiry and to ensure that our research remains focused on the key
aspects of OverHAuL’s functionality and impact within its intended domain. By addressing these
questions, we aim to uncover valuable insights that will contribute to a deeper understanding
of OverHAuL’s capabilities and its position in contemporary automatic fuzzing applications:

• RQ1: Can OverHAuL generate working harnesses for unfuzzed C projects?

• RQ2: What characteristics do these harnesses have? Are they similar to man-made
harnesses?

• RQ3: How do LLM usage patterns influence the generated harnesses?

• RQ4: How do different symbolic techniques affect the generated harnesses?

4.1. Experimental Benchmark

To evaluate OverHAuL, a benchmarking script was implemented1 and a corpus of ten open-
source C libraries was assembled. This collection comprises firstly of user dhvar’s “dateparse”
library, which is also used as a running example in OSS-Fuzz-Gen’s [9] experimental from-
scratch harnessing feature (Chapter 5). Secondly, nine other libraries chosen randomly2 from
the package catalog of Clib, a “package manager for the C programming language” [105], [106].
All libraries can be seen Table 4.1, along with their descriptions.

OverHAuL was evaluated through the experimental benchmark from 6th of June, 2025 to 18th of
July, 2025, using OpenAI’s gpt-4.1-mini model [107]. For these runs, each OverHAuL execution
was configured with a 5 minute harness execution timeout and an iteration budget of 10. Each
benchmark run was executed as a GitHub Actions workflow on Linux virtual machines with
4-vCPUs and 16GiB of memory hosted on Microsoft Azure [108], [109]. The result directory (as
described in Section 4.1.1) for each is available as a downloadable artifact in the corresponding
GitHub Actions entry.

1Available at https://github.com/kchousos/OverHAuL/blob/master/benchmarks/benchmark.sh.
2From the subset of libraries that do not have exotic external dependencies, like the X11 development toolchain.

29

https://github.com/kchousos/OverHAuL/blob/master/benchmarks/benchmark.sh

Table 4.1.: The benchmark project corpus. Each project name links to its corresponding GitHub
repository. Each is followed by a short description, its GitHub stars count and its Significant Lines
of Code (SLOC), as of July 18th, 2025.

Project Description Stars SLOC

dvhar/dateparse A library that allows parsing dates without
knowing the format in advance.

2 2272

clibs/buffer A string manipulation library. 204 354
jwerle/libbeaufort A library implementation of the Beaufort cipher

[110].
13 321

jwerle/libbacon A library implementation of the Baconian cipher
[111].

8 191

jwerle/chfreq.c A library for computing the character frequency in
a string.

5 55

jwerle/progress.c A library for displaying progress bars in the
terminal.

76 357

willemt/cbuffer A circular buffer implementation. 261 170
willemt/torrent-
reader

A torrent-file reader library. 6 294

orangeduck/mpc A type-generic parser combinator library. 2,753 3632
h2non/semver.c A semantic version v2.0 parsing and rendering

library [112].
190 608

4.1.1. Local Benchmarking

To run the benchmark locally, one would need to follow the installation instructions in Section 3.1
and then execute the benchmarking script, like so:

1 $./benchmarks/benchmark.sh

The cloned repositories with their corresponding harnesses will then be located in a subdirec-
tory of benchmark_results, which will have the name format of mini__<timestamp>__ReAct__<llm-
model>__<max-exec-time>__<iter-budget>. “Mini” corresponds to the benchmark project cor-
pus described above, since a 30-project corpus was initially created and is now coined as
“full” benchmark. Both the mini and full benchmarks are located in benchmarks/repos.txt and
benchmarks/repos-mini.txt respectively. To execute the benchmark for the “full” corpus, users
can add the -b full flag in the script’s invocation. Also, the LLM model used can be defined
with the -m command-line flag.

30

https://github.com/dvhar/dateparse
https://github.com/clibs/buffer
https://github.com/jwerle/libbeaufort
https://github.com/jwerle/libbacon
https://github.com/jwerle/chfreq.c
https://github.com/jwerle/progress.c
https://github.com/willemt/cbuffer
https://github.com/willemt/torrent-reader
https://github.com/willemt/torrent-reader
https://github.com/orangeduck/mpc
https://github.com/h2non/semver.c

4.2. Results

The outcomes of the benchmark experiments are shown in Figure 4.1. To ensure the reliability
of these results, each reported crash was manually validated to confirm that it stemmed from
genuine defects within the target library, rather than issues of the generated harness. An
iteration heatmap was also generated for the verifiably fuzzed projects, displayed in Figure 4.2.
With these validated findings, we are now positioned to address the initial research questions
posed in this chapter.

Figure 4.1.: The benchmark results for OverHAuL are illustrated with the 𝑦-axis depicting the
ten-project corpus outlined in Section 4.1. The 𝑥-axis represents the various benchmark runs. Each
label constitutes a unique hash identifier corresponding to a specific GitHub Actions workflow run,
which can be accessed at https://github.com/kchousos/OverHAuL/actions/runs/HASH. An overview
of all benchmark runs is available at https://github.com/kchousos/OverHAuL/actions/workflows
/benchmarks.yml. In this matrix, a green/1 block indicates that OverHAuL successfully generated
a new harness for the project and was able to find a crash input. On the other hand, a yellow/0
block indicates that while a compilable harness was produced, no crash input was found within
the five-minute execution period. Finally, an orange/-2 block means that the crash that was found
derives from errors in the harness itself. AImportantly, there are no red/-1 blocks, which would
indicate cases where a compilable harness could not be generated.

31

https://github.com/kchousos/OverHAuL/actions/runs/HASH
https://github.com/kchousos/OverHAuL/actions/workflows/benchmarks.yml
https://github.com/kchousos/OverHAuL/actions/workflows/benchmarks.yml

Figure 4.2.: This heatmap illustrates the number of iterations required for each project to be
successfully harnessed, as determined by the benchmark results. Higher color intensity corresponds
to a greater number of iterations needed for successful harnessing. Cells left blank signify instances
where no valid harness was generated.

32

4.2.1. RQ 1: Can OverHAuL generate working harnesses for unfuzzed C
projects?

OverHAuL demonstrates a strong capability in generating working harnesses for previously
unfuzzed C projects. In benchmark evaluations, it achieved a success rate of 81.25% in producing
fuzzing harnesses that were effective at uncovering crash-inducing inputs in target programs.
Notably, all harnesses generated by OverHAuL were valid C programs—an improvement over
prior methods such as OSS-Fuzz-Gen [9], which occasionally outputs the LLM’s markdown
answers instead. The harnesses consistently utilized existing functions obtained from the
codebase oracle and interacted appropriately with the Library Under Test’s API, with only
minimal instances of irrelevant or hallucinated code observed. While the potential exists for
non-compilable harnesses to be generated, the benchmark results included no such cases,
underscoring the significance and effectiveness of compilation feedback and the integrated
“fixer” agent in OverHAuL’s workflow. These findings collectively indicate that OverHAuL is
effective at generating robust, valid, and meaningful harnesses for C projects lacking previous
fuzzing infrastructure.

4.2.2. RQ2: What characteristics do these harnesses have? Are they similar to
man-made harnesses?

In examining the characteristics of the generated harnesses, we observe several notable patterns.
The harnesses are typically well-commented, a result of explicit instructions given to the
language models. They are designed to target various levels of the library’s functionality. In some
cases, they focus on higher-level entry point functions (Section B.3), while in other instances,
they concentrate on more narrowly scoped internal functions (Listing 3.5). Usually the generated
fuzz targets are clear and closely resemble the kind of harnesses a skilled software engineer
might write. These harnesses make appropriate and sensible use of the target API, as illustrated
in examples such as Listing 3.5. However, some harnesses do exhibit the use of unexplained
constants or idiosyncratic control flow constructs, which can hinder comprehensibility and may
introduce errors. Additionally, we find that the characteristics of generated harnesses can vary
substantially across different projects and even between runs, with differences evident in both
their size and complexity (see Appendix B). Overall, while the generated harnesses often echo
the structure and intent of man-made harnesses, inconsistencies and occasional inexplicable
design choices distinguish them from their manually written counterparts.

4.2.3. RQ3: How do LLM usage patterns influence the generated harnesses?

The effectiveness of LLM-driven fuzzing harness generation in OverHAuL is heavily influenced
by two primary factors: model selection and prompting strategies. The experimental evaluation
presents compelling evidence regarding the substantial impact of both dimensions.

All benchmark experiments on GitHub’s infrastructure were conducted using OpenAI’s gpt-
4.1-mini. Preliminary local testing included a spectrum of models—gpt-4.1, gpt-4o, gpt-4,

33

and gpt-3.5-turbo. Notably, both gpt-4.1 and gpt-4.1-mini achieved comparable performance,
consistently generating robust fuzzing harnesses. In contrast, gpt-4o yielded somewhat average
results, while gpt-4 and gpt-3.5-turbo exhibited significantly inferior performance, averaging
only 2 out of 10 projects successfully harnessed per benchmark run. Models with suboptimal
performance were excluded in subsequent development phases. These findings underscore the
necessity of selecting advanced LLM architectures to realize OverHAuL’s potential; in particular,
gpt-4o represents a recent baseline for acceptable performance. Because LLM model capabilities
are evolving rapidly, it is reasonable to anticipate ongoing improvements in OverHAuL’s
harness-generation efficacy as newer LLMs become available.

Prompting methodology is equally crucial. The adoption of ReAct prompting has proven most
effective in the current implementation of OverHAuL [53]. Alternative prompting paradigms—
including zero-shot and Chain-of-Thought (COT) approaches [50]—were empirically evaluated,
as detailed in Appendix A, but failed to deliver satisfactory outcomes. A central challenge
in automated harness generation involves ensuring that the resulting harness is both com-
pilable and operationally effective. This alignment with real-world constraints necessitates
continuous interaction between the LLM and the target environment, best achieved through
agentic workflows [113]. The superior performance of ReAct prompting likely stems from
its structured approach to iterative code exploration and refinement, facilitating a cycle of
observation, planning, and action that is particularly well-suited to harness synthesis.

A central element of OverHAuL’s architecture is its triplet of ReAct agents, each contribut-
ing a distinct role in the collaborative generation of fuzzing harnesses. Local benchmarking
demonstrates an almost linear increase in success rates with the number of iteration cycles,
underscoring the efficacy of agentic collaboration and iterative refinement in enhancing har-
ness quality. As illustrated in Figure 4.2, projects such as “dateparse” and “semver.c” exhibit
marked improvements when afforded larger iteration budgets. This trend highlights the pivotal
roles of the “fixer” and “improver” agents, whose interventions enable the system to surmount
challenges present in initial harness generations, ultimately advancing the caliber of the final
outputs.

Additionally, the inclusion of a codebase oracle is instrumental in scaling code exploration
efficiently. Unlike previously tested methods (see Appendix A), the codebase oracle enables
comprehensive traversal and understanding of project code, overcoming the token and context
window limitations typically associated with LLMs.

In summary, the findings for RQ3 indicate that continuous advancements in LLM technology and
prompting architectures will further enhance the ability of systems like OverHAuL to automate
efficient fuzzing harness generation. Integrating agentic modules that can dynamically assess
their environment and incorporate runtime feedback will likely outperform more static LLM
applications, particularly within the domain of automated fuzzing.

34

4.2.4. RQ4: How do different symbolic techniques affect the generated
harnesses?

Throughout the development of OverHAuL and its various iterations, numerous programming
techniques were assessed in pursuit of answering RQ4 (Appendix A). Simple source code
concatenation and its subsequent injection into LLM prompts revealed significant limitations,
primarily due to the constraints of context windows. Conversely, the usage of tools capable
of retrieving file contents marked a meaningful advancement. Nonetheless, this approach still
encountered challenges, such as inaccessible code blocks and exploration that lacked semantic
relevance. In response to these difficulties, the implementation of a function-level vector store
functioning as a codebase oracle is proposed as a highly scalable solution. This strategy not
only enhances the organization of larger files but also accommodates expanding project sizes,
facilitating more semantically meaningful code examination.

The significance of the iterative feedback loop is clearly demonstrated by the results presented
in Figure 4.2. Analysis of the heatmap reveals that earlier versions of OverHAuL, which
employed a one-shot approach to harness generation, achieved a success rate of only 28.75%.
In contrast, the current implementation shows that 42 out of 65 projects successfully fuzzed
(64.62%) did not produce a successful harness in the initial attempt and therefore benefited from
the iterative feedback process. Notably, two projects (3.07%) required the full allocation of eight
iterations, underscoring the necessity of maintaining a generous iteration budget to maximize
effectiveness.

4.3. Discussion

As discussed in Section Section 4.2, the capabilities and effectiveness of OverHAuL are closely
tied to the choice of the underlying large language model. OverHAuL’s modular architecture
ensures that advances in LLM research will directly enhance its performance. Each release
of a new, more capable model can be readily integrated, thereby amplifying OverHAuL’s
effectiveness without the need for substantial redesign.

A noteworthy consideration in our benchmarking setup is the possibility that some of the open-
source libraries evaluated may have been included in the LLM’s training data. This introduces a
risk of overestimating OverHAuL’s performance on code that is unseen or proprietary. Results
for closed-source or less widely available libraries could therefore be weaker. Nonetheless, this
potential limitation can theoretically be addressed through targeted fine-tuning of the LLM
[114], [115].

4.3.1. Threats to Validity

Our evaluation of OverHAuL was conducted on ten relatively obscure open-source C libraries
representing a range of application domains and functionalities. While this selection reduces

35

the likelihood that these projects were used in LLM training and thus minimizes potential bias,
it remains uncertain how transferable our results are to larger, more complex, or structurally
different codebases. Factors such as varying design paradigms, architectural patterns, or
real-world deployment contexts may pose new challenges for OverHAuL’s scalability and
effectiveness.

Additionally, the risk of LLM hallucination constitutes an internal threat to validity. Such
hallucinations may require multiple attempts or occasional manual adjustments to produce
valid and useful fuzz drivers. However, because LLMs—and thus OverHAuL—operate in a
non-deterministic manner, it is possible to rerun the process and obtain alternative results.
The inherent stochasticity of the underlying LLMs thus allows users to recover from initial
failures, ensuring that the impact of hallucinations remains limited to efficiency rather than
undermining the core applicability of the approach.

In summary, while our findings demonstrate the potential of OverHAuL, they also highlight
important limitations and directions for future work, especially in improving robustness and
evaluating performance across a broader spectrum of software projects.

36

5. Related work

Automated testing, automated fuzzing and automated harness creation have a long research
history. Still, a lot of ground remains to be covered until true automation of these tasks is
achieved. Until the introduction of transformers [39] and the 2020’s boom of commercial
GPTs [48], automation regarding testing and fuzzing was mainly attempted through static
and dynamic program analysis methods. These approaches are still utilized, but the fuzzing
community has shifted almost entirely to researching the incorporation and employment of
LLMs in the last half decade [9]–[12], [62], [65], [79], [116]–[118]. The most significant and
recent works in this field can be categorized according to their primary methodologies—whether
they employ program analysis techniques or LLMs—and by the extent to which they depend on
external resources beyond the source code. It is important to note that these categories are not
mutually exclusive.

5.1. Static and Dynamic Analysis-Powered Fuzzing

These tools employ both dynamic and static analyses of source code, as well as LLMs to enhance
the automated generation of effective fuzz drivers.

KLEE [119] is a seminal and widely cited symbolic execution engine introduced in 2008 by
Cadar et al. It was designed to automatically generate high-coverage test cases for programs
written in C, using symbolic execution to systematically explore the control flow of a program.
KLEE operates on the LLVM [33] bytecode representation of programs. Instead of executing a
program on concrete inputs, KLEE performs symbolic execution—that is, it runs the program
on symbolic inputs, which represent all possible values simultaneously. At each conditional
branch, KLEE explores both paths by forking the execution and accumulating path constraints
(i.e., logical conditions on input variables) along each path. This enables it to traverse many
feasible execution paths in the program, including corner cases that may be difficult to reach
through random testing or manual test creation. When an execution path reaches a terminal
state (e.g., a program exit, an assertion failure, or a segmentation fault) KLEE uses a constraint
solver to compute concrete input values that satisfy the accumulated constraints for that path.
These values form a test case that will deterministically drive the program down that specific
path when executed concretely.

IRIS [116] is a 2025 open-source neurosymbolic system for static vulnerability analysis. Given
a codebase and a list of user-specified Common Weakness Enumerations (CWEs), it analyzes
source code to identify paths that may correspond to known vulnerability classes. IRIS combines

37

symbolic analysis—such as control- and data-flow reasoning—with neural models trained to
generalize over code patterns. It outputs candidate vulnerable paths along with explanations
and CWE references. The system operates on full repositories and supports extensible CWE
definitions.

IntelliGen [120] is a system for automatically synthesizing fuzz drivers by statically identifying
potentially vulnerable entry-point functions within C projects. Implemented using LLVM [33],
IntelliGen focuses on Improving fuzzing efficiency by targeting code more likely to contain
memory safety issues, rather than exhaustively fuzzing all available functions. The system
comprises of two main components: the Entry Function Locator and the Fuzz Driver Synthesizer.
The Entry Function Locator analyzes the project’s AST and classifies functions based on heuris-
tics that indicate vulnerability. These include pointer dereferencing, calls to memory-related
functions (e.g., memcpy, memset), and invocation of other internal functions. Functions that score
highly on these metrics are prioritized for fuzz driver generation. The guiding insight is that
entry points with fewer argument checks and more direct memory operations expose more
useful program logic for fuzz testing. The Fuzz Driver Synthesizer then generates harnesses for
these entry points. For each target function, it synthesizes an LLVMFuzzerTestOneInput function
that invokes the target with arguments derived from the fuzz input. This process involves
inferring argument types from the source code and ensuring that runtime behavior does not
violate memory safety—thus avoiding invalid inputs that would cause crashes unrelated to
genuine bugs.

CKGFuzzer [121] is a fuzzing framework designed to automate the generation of effective fuzz
drivers for C/C++ libraries by leveraging static analysis and LLMs. Its workflow begins by
parsing the target project along with any associated library APIs to construct a code knowledge
graph. This involves two primary steps: first, parsing the AST, and second, performing inter-
procedural program analysis. Through this process, CKGFuzzer extracts essential program
elements such as function signatures and implementations, and call relationships. Using the
knowledge graph, CKGFuzzer then identifies and queries meaningful API combinations, focusing
on those that are either frequently invoked together or exhibit functional similarity. It generates
candidate fuzz drivers for these combinations and attempts to compile them. Any compilation
errors encountered are automatically repaired using heuristics and domain knowledge. A
dynamically updated knowledge base, constructed from prior library usage patterns, guides
both the generation and repair processes. Once the drivers are successfully compiled, CKGFuzzer
executes them while monitoring code coverage. It uses coverage feedback to iteratively mutate
underperforming API combinations, refining them until new execution paths are discovered
or a preset mutation budget is exhausted. Finally, any crashes triggered during fuzzing are
subjected to a reasoning process based on chain-of-thought prompting [50] (Section 2.2.2). To
help determine their severity and root cause, CKGFuzzer consults an LLM-generated knowledge
base containing real-world examples of vulnerabilities mapped to known CWE entries.

38

5.2. Extra Resources Required

The following works necessitate the presence of client code and/or unit tests that interact
with the program’s API. These works utilize and modify such existing code to create enhanced
fuzzing harnesses.

FUDGE [12] is a closed-source tool, made by Google, for automatic harness generation of C
and C++ projects based on existing client code. It was used in conjunction with and in the
improvement of Google’s OSS-Fuzz [80]. Being deployed inside Google’s infrastructure, FUDGE
continuously examines Google’s internal code repository, searching for code that uses external
libraries in a meaningful and “fuzzable” way (i.e. predominantly for parsing). If found, such
code is sliced [122] based on its Abstract Syntax Tree (AST) using LLVM’s Clang tool [33]. The
above process results in a set of abstracted mostly-self-contained code snippets that make use
of a library’s calls and/or API. These snippets are later synthesized into the body of a fuzz driver,
with variables being replaced and the fuzz input being utilized. Each is then injected in an
LLVMFuzzerTestOneInput function and finalized as a fuzzing harness. A building and evaluation
phase follows for each harness, where they are executed and examined. Every passing harness
along with its evaluation results is stored in FUDGE’s database, reachable to the user through a
custom web-based UI.

UTopia [10] (stylized UTopia) is an open-source automatic harness generation framework.
Aside from the library code, It operates solely on user-provided unit tests since, according to
Jeong et al. [10], they are a resource of complete and correct API usage examples containing
working library set-ups and tear-downs. Additionally, each of them are already close to a fuzz
target, in the sense that they already examine a single and self-contained API usage pattern.
Each generated harness follows the same data flow of the originating unit test. Static analysis is
employed to figure out what fuzz input placement would yield the most results. It is also utilized
in abstracting the tests away from the syntactical differences between testing frameworks, along
with slicing and AST traversing using Clang.

Another project of Google is FuzzGen [11], this time open-source. Like FUDGE, it leverages
existing client code of the target library to create fuzz targets for it. FuzzGen uses whole-system
analysis, through which it creates an Abstract API Dependence Graph (A2DG). It uses the latter
to automatically generate LibFuzzer-compatible harnesses. For FuzzGen to work, the user needs
to provide both client code and/or tests for the API and the API library’s source code as well.
FuzzGen uses the client code to infer the correct usage of the API and not its general structure,
in contrast to FUDGE. FuzzGen’s workflow can be divided into three phases: 1. API usage
inference. By analyzing client code and tests, FuzzGen recognizes which functions belong to the
library and learns its correct API usage patterns. This process is done with the help of Clang.
To test if a function is actually a part of the library, a sample program is created and compiled.
If the program compiles successfully, then the function is indeed a valid API call. 2. A2DG
construction mechanism. For all the existing API calls, FuzzGen builds an A2DG to record the
API usages and infers its intended structure. After completion, this directed graph contains all
the valid API call sequences found in the client code corpus. It is built in a two-step process:
First, many smaller A2DGs are created, one for each root function per client code snippet. Once

39

such graphs have been created for all the available client code instances, they are combined
to formulate the master A2DG. 3. Fuzzer generator. Through the A2DG, a fuzzing harness is
created. Contrary to FUDGE, FuzzGen does not create multiple “simple” harnesses but a single
complex one with the goal of covering the whole A2DG.

5.3. Only Source Code Required

The approaches described in this section enable the creation of new fuzzing harnesses using
exclusively the source code of the target library.

OSS-Fuzz [80], [123] is a continuous, scalable and distributed cloud fuzzing solution for critical
and prominent open-source projects. Developers of such software can submit their projects
to OSS-Fuzz’s platform, where its harnesses are built and constantly executed. This results in
multiple bug findings that are later disclosed to the primary developers and are later patched.
OSS-Fuzz started operating in 2016, an initiative in response to the Heartbleed vulnerability
[22], [23], [25]. Its hope is that through more extensive fuzzing such errors could be caught
and corrected before having the chance to be exploited and thus disrupt the public digital
infrastructure. So far, it has helped uncover over 10,000 security vulnerabilities and 36,000
bugs across more than 1,000 projects, significantly enhancing the quality and security of major
software like Chrome, OpenSSL, and Systemd. A project that’s part of OSS-Fuzz must have
been configured as a ClusterFuzz [124] project. ClusterFuzz is the fuzzing infrastructure that
OSS-Fuzz uses under the hood and depends on Google Cloud Platform services, although it
is possible to host it locally. Such an integration requires setting up a build pipeline, fuzzing
jobs and expects a Google Developer account. Results are accessible through a web interface.
ClusterFuzz, and by extension OSS-Fuzz, supports fuzzing through LibFuzzer, AFL++, Honggfuzz
and FuzzTest—successor to Centipede— with the last two being Google projects [19], [32], [125],
[126]. C, C++, Rust, Go, Python and Java/JVM projects are supported.

OSS-Fuzz-Gen (OFG) [9], [127] is Google’s current state-of-the-art project regarding automatic
harness generation through LLMs. It’s purpose is to improve the fuzzing infrastructure of
open-source projects that are already integrated into OSS-Fuzz. Given such a project, OSS-
Fuzz-Gen uses its preexisting fuzzing harnesses and modifies them to produce new ones. Its
architecture can be described as follows: 1. With an OSS-Fuzz project’s GitHub repository link,
OSS-Fuzz-Gen iterates through a set of predefined build templates and generates potential build
scripts for the project’s harnesses. 2. If any of them succeed they are once again compiled,
this time through fuzz-introspector [81]. The latter constitutes a static analysis tool, with
fuzzer developers specifically in mind. 3. Build results, old harness and fuzz-introspector report
are included in a template-generated prompt, through which an LLM is called to generate a
new harness. 4. The newly generated fuzz target is compiled and if it is done so successfully
it begins execution inside OSS-Fuzz’s infrastructure. This method proves to be meaningful,
with code coverage in fuzz campaigns increasing thanks to the new generated fuzz drivers.
In the case of the tinyxml2 project [128], line coverage went from 38% to 69% without any
manual interventions [127]. In 2024, OSS-Fuzz-Gen introduced an experimental feature for

40

generating harnesses in previously unfuzzed projects, meaning preexisting harnesses are no
longer required [129]. Although this would be a step forwrard, this feature seems to have been
abandonded. The code for this feature resides in the experimental/from_scratch directory of the
project’s GitHub repository [9], with the latest known working commit being 171aac2 and the
latest overall commit being four months ago, as of this writing.

AutoGen [79] is a closed-source tool that generates new fuzzing harnesses, given only the
library code and documentation. The user specifies the function for which a harness is to be
generated. AutoGen gathers information for this function—such as the function body, used
header files, function calling examples—from the source code and documentation1. Through
specific prompt templates containing the above information, an LLM is tasked with generating
a new fuzz driver, while another is tasked with generating a compilation command for said
driver. If the compilation fails, both LLMs are called again to fix the problem, whether it was on
the driver’s or command’s side. This loop iterates until a predefined maximum value or until a
fuzz driver is successfully generated and compiled. If the latter is the case, it is then executed.
If execution errors exist, the LLM responsible for the driver generation is used to correct them.
If not, the pipeline has terminated and a new fuzz driver has been successfully generated.

5.4. Differences With OverHAuL

OverHAuL differs, in some way, with each of the aforementioned works. Firstly, although KLEE
and IRIS [116], [119] tackle the problem of automated testing and both IRIS and OverHAuL can
be considered neurosymbolic AI tools, the similarities end there. None of them utilize LLMs the
same way we do—with KLEE not utilizing them at all, as it precedes them chronologically—and
neither are automating any part of the fuzzing process.

When it comes to FUDGE, FuzzGen and UTopia [10]–[12], all three depend on and demand
existing client code and/or unit tests. On the other hand, OverHAuL requires only the bare
minimum: the library code itself. Another point of difference is that in contrast with OverHAuL,
these tools operate in a linear fashion. No feedback is produced or used in any step and any
point failure results in the termination of the entire run.

OverHAuL challenges a common principle of these tools, stated explicitly in FUDGE’s paper
[12]: “Choosing a suitable fuzz target (still) requires a human”. OverHAuL chooses to let the
LLM, instead of the user, explore the available functions and choose one to target in its fuzz
driver.

Both IntelliGen and CKGFuzzer [120], [121] depend primarily on programmatic analysis of the
target projects—like type inference and knowledge graph construction, respectively. In contrast,
OverHAuL delegates a greater portion of this analytical workload to LLM agents, leveraging
their reasoning capabilities to achieve more accurate and reliable outcomes.

1Therefore, while no pre-existing client code is necessary, available documentation remains essential.

41

OSS-Fuzz-Gen [9] can be considered a close counterpart of OverHAuL, and in some ways it is.
A lot of inspiration was gathered from it, like for example the inclusion of static analysis and its
usage in informing the LLM. Yet, OSS-Fuzz-Gen has a number of disadvantages that make it in
some cases an inferior option. For one, OFG is tightly coupled with the OSS-Fuzz platform [80],
which even on its own creates a plethora of issues for the common developer. To integrate their
project into OSS-Fuzz, they would need to: Transform it into a ClusterFuzz project [124] and take
time to write harnesses for it. Even if these prerequisites are carried out, it probably would not
be enough. Per OSS-Fuzz’s documentation [123]: “To be accepted to OSS-Fuzz, an open-source
project must have a significant user base and/or be critical to the global IT infrastructure”. This
means that OSS-Fuzz is a viable option only for a small minority of open-source developers
and maintainers. One countermeasure of the above shortcoming would be for a developer to
run OSS-Fuzz-Gen locally. This unfortunately proves to be an arduous task. As it is not meant
to be used standalone, OFG is not packaged in the form of a self-contained application. This
makes it hard to setup and difficult to use interactively. Like in the case of FUDGE, OFG’s
actions are performed linearly. No feedback is utilized nor is there graceful error handling
in the case of a step’s failure. Even in the case of the experimental feature for bootstrapping
unfuzzed projects, OFG’s performance varies heavily. During experimentation, a lot of generated
harnesses were still wrapped either in Markdown backticks or <code> tags, or were accompanied
with explanations inside the generated .c source file. Even if code was formatted correctly, in
many cases it missed necessary headers for compilation or used undeclared functions.

Lastly, the closest counterpart to OverHAuL is AutoGen [79]. Their similarity stands in the
implementation of a feedback loop between LLM and generated harness. However, most other
implementation decisions remain distinct. One difference regards the fuzzed function. While
AutoGen requires a target function to be specified by the user in which it narrows during its
whole run, OverHAuL delegates this to the LLM, letting it explore the codebase and decide by
itself the best candidate. Another difference lies in the need—and the lack of—of documentation.
While AutoGen requires it to gather information for the given function, OverHAuL leans into the
role of a developer by reading the related code and comments and thus avoiding any mismatches
between documentation and code. Finally, the LLMs’ input is built based on predefined prompt
templates, a technique also present in OSS-Fuzz-Gen. OverHAuL operates one abstraction level
higher, leveraging DSPy [92] for programming instead of prompting the LLMs used.

In conclusion, OverHAuL constitutes an open-source tool that offers new functionality by
offering a straightforward installation process, packaged as a self-contained Python package
with minimal external dependencies. It also introduces novel approaches compared to previous
work by

1. Implementing a feedback mechanism between harness generation, compilation, and
evaluation phases,

2. Using autonomous ReAct agents capable of codebase exploration,
3. Leveraging a vector store for code consumption and retrieval.

42

6. Future Work

The prototype implementation of OverHAuL offers a compelling demonstration of its potential
to automate the fuzzing process for open-source libraries, providing tangible benefits to devel-
opers and maintainers alike. This initial version successfully validates the core design principles
underpinning OverHAuL, showcasing its ability to streamline and enhance the software testing
workflow through automated generation of fuzz drivers using large language models. Never-
theless, while these foundational capabilities lay a solid groundwork, numerous avenues exist
for further expansion, refinement, and rigorous evaluation to fully realize the tool’s potential
and adapt to evolving challenges in software quality assurance.

6.1. Enhancements to Core Features

Enhancing OverHAuL’s core functionality represents a primary direction for future development.
First, expanding support to encompass a wider array of build systems commonly employed in C
and C++ projects—such as GNU Make, CMake, Meson, and Ninja [87], [88], [130], [131]—would
significantly broaden the scope of libraries amenable to automated fuzzing using OverHAuL.
This advancement would enable OverHAuL to scale effectively and be applied to larger, more
complex codebases, thereby increasing its practical utility and impact.

Second, integrating additional fuzzing engines beyond LibFuzzer stands out as a strategic
enhancement. Incorporation of widely adopted fuzzers like AFL++ [32] could diversify the
fuzzing strategies available to OverHAuL, while exploring more experimental tools such as
GraphFuzz [118] may pioneer specialized approaches for certain code patterns or architectures.
Multi-engine support would also facilitate extending language coverage, for instance by incor-
porating fuzzers tailored to other programming ecosystems—for example, Google’s Atheris for
Python projects [132]. Such versatility would position OverHAuL as a more universal fuzzing
automation platform.

Third, the evaluation component of OverHAuL presents an opportunity for refinement through
more sophisticated analysis techniques. Beyond the current criteria, incorporating dynamic
metrics such as differential code coverage tracking between generated fuzz harnesses would
yield deeper insights into test quality and coverage completeness. This quantitative evaluation
could guide iterative improvements in fuzz driver generation and overall testing effectiveness.

Finally, OverHAuL’s methodology could be extended to leverage existing client codebases and
unit tests in addition to the library source code itself, resources that for now OverHAuL leaves
untapped. Inspired by approaches like those found in FUDGE and FuzzGen [11], [12], this

43

enhancement would enable the tool to exploit programmer-written usage scenarios as seeds or
contexts, potentially generating more meaningful and targeted fuzz inputs. Incorporating these
richer information sources would likely improve the efficacy of fuzzing campaigns and uncover
subtler bugs.

6.2. Experimentation with Large Language Models and Data
Representation

OverHAuL’s reliance on large language models (LLMs) invites comprehensive experimentation
with different providers and architectures to assess their comparative strengths and limitations.
Conducting empirical evaluations across leading models—such as OpenAI’s o1 and o3 families
and Anthropic’s Claude Opus 4—will provide valuable insights into their capabilities, cost-
efficiency, and suitability for fuzz driver synthesis. Additionally, specialized code-focused LLMs,
including generative and fill-in models like Codex-1 and CodeGen [56]–[58], merit exploration
due to their targeted optimization for source code generation and understanding.

Another dimension worthy of investigation concerns the granularity of code chunking employed
during the given project’s code processing stage. Whereas the current approach partitions
code at the function level, experimenting with more nuanced segmentation strategies—such as
splitting per step inside a function, as a finer-grained technique—could improve the semantic
coherence of stored representations and enhance retrieval relevance during fuzz driver genera-
tion. This line of inquiry has the potential to optimize model input preparation and ultimately
improve output quality.

6.3. Comprehensive Evaluation and Benchmarking

To thoroughly establish OverHAuL’s effectiveness, extensive large-scale evaluation beyond the
initial 10-project corpus is imperative. Applying the tool to repositories indexed in the clib
package manager [105], which encompasses hundreds of C libraries, would test scalability and
robustness across diverse real-world settings. Such a broad benchmark would also enable sys-
tematic comparisons against state-of-the-art automated fuzzing frameworks like OSS-Fuzz-Gen
and AutoGen, elucidating OverHAuL’s relative strengths and identifying areas for improvement
[9], [79].

Complementing broad benchmarking, detailed ablation and matrix studies dissecting the con-
tributions of individual pipeline components and algorithmic choices will yield critical insights
into what drives OverHAuL’s performance. Understanding the impact of each module will
guide targeted optimizations and support evidence-based design decisions.

Furthermore, an economic analysis exploring resource consumption—such as API token usage
and associated monetary costs—relative to fuzzing effectiveness would be valuable for assess-

44

ing the practical viability of integrating LLM-based fuzz driver generation into continuous
integration processes.

6.4. Practical Deployment and Community Engagement

From a usability perspective, embedding OverHAuL within a GitHub Actions workflow repre-
sents a practical and impactful enhancement, enabling seamless integration with developers’
existing toolchains and continuous integration pipelines. This would promote wider adoption by
reducing barriers to entry and fostering real-time feedback during code development cycles.

Additionally, establishing a mechanism to generate and submit automated pull requests (PRs) to
the maintainers of fuzzed libraries—highlighting detected bugs and proposing patches—would
not only validate OverHAuL’s findings but also contribute tangible improvements to open-
source software quality. This collaborative feedback loop epitomizes the symbiosis between
automated testing tools and the open-source community. As an initial step, developing targeted
PRs for the projects where bugs were discovered during OverHAuL’s development would help
facilitate practical follow-up and improvements.

45

7. Conclusion

This thesis set out to address a pressing challenge in software testing for legacy and under-tested
C codebases: the significant manual effort required to develop fuzzing harnesses, especially in the
absence of pre-existing test infrastructure. In response, we present OverHAuL, a neurosymbolic
AI system capable of autonomously generating effective fuzzing harnesses directly from source
code. OverHAuL leverages the strengths of advanced large language model (LLM) agents,
enabling it to overcome the traditional dependencies on manual effort, client code, or existing
test harnesses that characterize previous tools.

Central to OverHAuL’s methodology is the integration of a triplet of ReAct LLM agents working
within a feedback-oriented, iterative loop, capable of investigating the given project’s source
code through a codebase oracle. This architecture allows the system to intelligently explore
otherwise opaque codebases, systematically identifying candidate entry points for fuzzing and
synthesizing robust harnesses. The end-to-end automation pipeline incorporates a compilation
and evaluation phase, during which the generated harnesses are systematically compiled and
rigorously assessed for correctness and effectiveness.

To rigorously assess OverHAuL’s efficacy and reliability, we designed a comprehensive evalu-
ation using a benchmark suite of ten open-source C libraries. Our experiments demonstrate
that OverHAuL successfully produced valid and usable fuzzing harnesses in 81.25% of the cases.
This high success rate offers strong evidence supporting OverHAuL’s correctness and practical
applicability, substantiating the central hypothesis of this thesis.

Through a comprehensive literature review of prominent related projects and a detailed com-
parative analysis between them and OverHAuL, we demonstrate that OverHAuL distinguishes
itself in several critical aspects. Our system’s high degree of automation and limited dependence
on external artifacts constitute significant advantages over previous methods, particularly re-
garding its applicability to legacy or inadequately documented C codebases. OverHAuL’s novel
methodology underscores its distinctive role within the rapidly evolving landscape of automated
fuzzing solutions, especially when contrasted against other state-of-the-art approaches.

Looking ahead, this body of work invites several promising directions for future exploration.
Expanding OverHAuL’s applicability to additional programming languages and improving
compatibility with established build ecosystems would significantly widen its practical impact.
Ongoing refinements to its AI-driven algorithms, especially in areas of program slicing and
harness evaluation, have the potential to further enhance the robustness and effectiveness of
the system. Lastly, conducting more comprehensive evaluations and large-scale comparisons
with state-of-the-art tools would provide stronger evidence for the effectiveness of OverHAuL,
further demonstrating its superiority over existing solutions.

46

In summary, this thesis advances the field of automated software testing by demonstrating the
feasibility and utility of autonomously generated fuzzing harnesses for C projects. OverHAuL
establishes a compelling foundation for future research, representing a substantial step towards
fully automated, scalable, and intelligent fuzzing infrastructure in the face of increasingly
complex software systems.

47

Bibliography

[1] B. W. Kernighan and D. M. Ritchie, The C Programming Language (Prentice-Hall Software Series).
Englewood Cliffs, N.J: Prentice-Hall, 1978, 228 pp., isbn: 978-0-13-110163-0.

[2] D. M. Ritchie, S. C. Johnson, M. E. Lesk, and B. W. Kernighan, “The C programming language,”
Bell Sys. Tech. J, vol. 57, no. 6, pp. 1991–2019, 1978. [Online]. Available: https://www.academia.ed
u/download/67840358/1978.07_Bell_System_Technical_Journal.pdf#page=85.

[3] G. J. Holzmann, “The Power of 10: Rules for Developing Safety-Critical Code,” Jun. 2006. [Online].
Available: https://web.eecs.umich.edu/~imarkov/10rules.pdf.

[4] Ada Developers. “Ada Reference Manual, 2022 Edition,” Ada Information Clearinghouse. (2022),
[Online]. Available: https://www.adaic.org/resources/add_content/standards/22rm/html/RM-
TTL.html.

[5] Rust Project Developers. “Rust Programming Language.” (2025), [Online]. Available: https://ww
w.rust-lang.org/.

[6] N. Perry, M. Srivastava, D. Kumar, and D. Boneh. “Do Users Write More Insecure Code with AI
Assistants?” arXiv: 2211.03622. (Dec. 18, 2023), [Online]. Available: http://arxiv.org/abs/2211.036
22, pre-published.

[7] N. Kosmyna, E. Hauptmann, Y. T. Yuan, et al. “Your Brain on ChatGPT: Accumulation of Cognitive
Debt when Using an AI Assistant for Essay Writing Task.” arXiv: 2506.08872 [cs]. (Jun. 10, 2025),
[Online]. Available: http://arxiv.org/abs/2506.08872, pre-published.

[8] H.-P. H. Lee, A. Sarkar, L. Tankelevitch, et al., “The Impact of Generative AI on Critical Thinking:
Self-Reported Reductions in Cognitive Effort and Confidence Effects From a Survey of Knowledge
Workers,” 2025. [Online]. Available: https://hankhplee.com/papers/genai_critical_thinking.pdf.

[9] D. Liu, O. Chang, J. metzman, M. Sablotny, and M. Maruseac, OSS-fuzz-gen: Automated fuzz
target generation, version https://github.com/google/oss-fuzz-gen/tree/v1.0, May 2024. [Online].
Available: https://github.com/google/oss-fuzz-gen.

[10] B. Jeong, J. Jang, H. Yi, et al., “UTopia: Automatic Generation of Fuzz Driver using Unit Tests,” in
2023 IEEE Symposium on Security and Privacy (SP), May 2023, pp. 2676–2692. doi: 10.1109/SP4621
5.2023.10179394. [Online]. Available: https://ieeexplore.ieee.org/abstract/document/10179394.

[11] K. Ispoglou, D. Austin, V. Mohan, and M. Payer, “FuzzGen: Automatic fuzzer generation,” in
29th USENIX Security Symposium (USENIX Security 20), 2020, pp. 2271–2287. [Online]. Available:
https://www.usenix.org/conference/usenixsecurity20/presentation/ispoglou.

[12] D. Babić, S. Bucur, Y. Chen, et al., “FUDGE: Fuzz driver generation at scale,” in Proceedings of the
2019 27th ACM Joint Meeting on European Software Engineering Conference and Symposium on
the Foundations of Software Engineering, Tallinn Estonia: ACM, Aug. 12, 2019, pp. 975–985, isbn:
978-1-4503-5572-8. doi: 10.1145/3338906.3340456. [Online]. Available: https://dl.acm.org/doi/10.1
145/3338906.3340456.

48

https://www.academia.edu/download/67840358/1978.07_Bell_System_Technical_Journal.pdf#page=85
https://www.academia.edu/download/67840358/1978.07_Bell_System_Technical_Journal.pdf#page=85
https://web.eecs.umich.edu/~imarkov/10rules.pdf
https://www.adaic.org/resources/add_content/standards/22rm/html/RM-TTL.html
https://www.adaic.org/resources/add_content/standards/22rm/html/RM-TTL.html
https://www.rust-lang.org/
https://www.rust-lang.org/
https://arxiv.org/abs/2211.03622
http://arxiv.org/abs/2211.03622
http://arxiv.org/abs/2211.03622
https://arxiv.org/abs/2506.08872
http://arxiv.org/abs/2506.08872
https://hankhplee.com/papers/genai_critical_thinking.pdf
https://github.com/google/oss-fuzz-gen
https://doi.org/10.1109/SP46215.2023.10179394
https://doi.org/10.1109/SP46215.2023.10179394
https://ieeexplore.ieee.org/abstract/document/10179394
https://www.usenix.org/conference/usenixsecurity20/presentation/ispoglou
https://doi.org/10.1145/3338906.3340456
https://dl.acm.org/doi/10.1145/3338906.3340456
https://dl.acm.org/doi/10.1145/3338906.3340456

[13] V. J. M. Manes, H. Han, C. Han, et al. “The Art, Science, and Engineering of Fuzzing: A Survey.”
arXiv: 1812.00140 [cs]. (Apr. 7, 2019), [Online]. Available: http://arxiv.org/abs/1812.00140,
pre-published.

[14] A. Takanen, J. DeMott, C. Miller, and A. Kettunen, Fuzzing for Software Security Testing and
Quality Assurance (Information Security and Privacy Library), Second edition. Boston London
Norwood, MA: Artech House, 2018, 1 p., isbn: 978-1-63081-519-6.

[15] M. Sutton, A. Greene, and P. Amini, Fuzzing: Brute Force Vulnerabilty Discovery. Upper Saddle
River, NJ: Addison-Wesley, 2007, 543 pp., isbn: 978-0-321-44611-4.

[16] N. Rathaus and G. Evron, Open Source Fuzzing Tools, G. Evron, Ed. Burlington, MA: Syngress
Pub, 2007, 199 pp., isbn: 978-1-59749-195-2.

[17] B. P. Miller, L. Fredriksen, and B. So, “An empirical study of the reliability of UNIX utilities,”
Commun. ACM, vol. 33, no. 12, pp. 32–44, Dec. 1, 1990, issn: 0001-0782. doi: 10.1145/96267.96279.
[Online]. Available: https://dl.acm.org/doi/10.1145/96267.96279.

[18] K. Serebryany, D. Bruening, A. Potapenko, and D. Vyukov, “AddressSanitizer: A fast address
sanity checker,” in 2012 USENIX Annual Technical Conference (USENIX ATC 12), 2012, pp. 309–318.
[Online]. Available: https://www.usenix.org/conference/atc12/technical-sessions/presentation/se
rebryany.

[19] LLVM Project. “libFuzzer – a library for coverage-guided fuzz testing. — LLVM 21.0.0git docu-
mentation.” (2025), [Online]. Available: https://llvm.org/docs/LibFuzzer.html.

[20] A. Rebert, S. K. Cha, T. Avgerinos, et al., “Optimizing seed selection for fuzzing,” in Proceedings
of the 23rd USENIX Conference on Security Symposium, ser. SEC’14, USA: USENIX Association,
Aug. 20, 2014, pp. 861–875, isbn: 978-1-931971-15-7.

[21] OWASP Foundation. “Fuzzing.” (), [Online]. Available: https://owasp.org/www-community/Fuzzi
ng.

[22] Blackduck, Inc. “Heartbleed Bug.” (Mar. 7, 2025), [Online]. Available: https://heartbleed.com/.

[23] CVE Program. “CVE - CVE-2014-0160.” (2014), [Online]. Available: https://cve.mitre.org/cgi-bin
/cvename.cgi?name=cve-2014-0160.

[24] The OpenSSL Project, Openssl/openssl, OpenSSL, Jul. 15, 2025. [Online]. Available: https://github
.com/openssl/openssl.

[25] D. Wheeler. “How to Prevent the next Heartbleed.” (2014), [Online]. Available: https://dwheeler.c
om/essays/heartbleed.html.

[26] GNU Project. “Bash - GNU Project - Free Software Foundation.” (), [Online]. Available: https://w
ww.gnu.org/software/bash/.

[27] M. Zalewski. “American fuzzy lop.” (), [Online]. Available: https://lcamtuf.coredump.cx/afl/.

[28] J. Saarinen. “Further flaws render Shellshock patch ineffective,” iTnews. (Sep. 29, 2014), [Online].
Available: https://www.itnews.com.au/news/further-flaws-render-shellshock-patch-ineffective-3
96256.

[29] T. Avgerinos, D. Brumley, J. Davis, et al., “The mayhem cyber reasoning system,” IEEE Security &
Privacy, vol. 16, no. 2, pp. 52–60, 2018.

[30] S. K. Cha, T. Avgerinos, A. Rebert, and D. Brumley, “Unleashing mayhem on binary code,” in 2012
IEEE Symposium on Security and Privacy, IEEE, 2012, pp. 380–394.

[31] T. Simonite, “This Bot Hunts Software Bugs for the Pentagon,” Wired, Jun. 1, 2020, issn: 1059-1028.
[Online]. Available: https://www.wired.com/story/bot-hunts-software-bugs-pentagon/.

49

https://arxiv.org/abs/1812.00140
http://arxiv.org/abs/1812.00140
https://doi.org/10.1145/96267.96279
https://dl.acm.org/doi/10.1145/96267.96279
https://www.usenix.org/conference/atc12/technical-sessions/presentation/serebryany
https://www.usenix.org/conference/atc12/technical-sessions/presentation/serebryany
https://llvm.org/docs/LibFuzzer.html
https://owasp.org/www-community/Fuzzing
https://owasp.org/www-community/Fuzzing
https://heartbleed.com/
https://cve.mitre.org/cgi-bin/cvename.cgi?name=cve-2014-0160
https://cve.mitre.org/cgi-bin/cvename.cgi?name=cve-2014-0160
https://github.com/openssl/openssl
https://github.com/openssl/openssl
https://dwheeler.com/essays/heartbleed.html
https://dwheeler.com/essays/heartbleed.html
https://www.gnu.org/software/bash/
https://www.gnu.org/software/bash/
https://lcamtuf.coredump.cx/afl/
https://www.itnews.com.au/news/further-flaws-render-shellshock-patch-ineffective-396256
https://www.itnews.com.au/news/further-flaws-render-shellshock-patch-ineffective-396256
https://www.wired.com/story/bot-hunts-software-bugs-pentagon/

[32] M. Heuse, H. Eißfeldt, A. Fioraldi, and D. Maier,AFL++, version 4.00c, Jan. 2022. [Online]. Available:
https://github.com/AFLplusplus/AFLplusplus.

[33] LLVM Project. “The LLVM Compiler Infrastructure Project.” (2025), [Online]. Available: https://ll
vm.org/.

[34] F. Bellard, P. Maydell, and QEMU Team, QEMU, version 10.0.2, May 29, 2025. [Online]. Available:
https://www.qemu.org/.

[35] Unicorn Engine, Unicorn-engine/unicorn, Unicorn Engine, Jul. 15, 2025. [Online]. Available: https:
//github.com/unicorn-engine/unicorn.

[36] H. Li, “Language models: Past, present, and future,” Commun. ACM, vol. 65, no. 7, pp. 56–63,
Jun. 21, 2022, issn: 0001-0782. doi: 10.1145/3490443. [Online]. Available: https://dl.acm.org/doi/1
0.1145/3490443.

[37] Z. Wang, Z. Chu, T. V. Doan, S. Ni, M. Yang, and W. Zhang, “History, development, and principles
of large language models: An introductory survey,” AI and Ethics, vol. 5, no. 3, pp. 1955–1971,
Jun. 1, 2025, issn: 2730-5961. doi: 10.1007/s43681-024-00583-7. [Online]. Available: https://doi.or
g/10.1007/s43681-024-00583-7.

[38] D. Bahdanau, K. Cho, and Y. Bengio. “Neural Machine Translation by Jointly Learning to Align
and Translate.” arXiv: 1409.0473 [cs, stat]. (May 19, 2016), [Online]. Available: http://arxiv.org
/abs/1409.0473, pre-published.

[39] A. Vaswani, N. Shazeer, N. Parmar, et al. “Attention Is All You Need.” arXiv: 1706.03762 [cs].
(Aug. 1, 2023), [Online]. Available: http://arxiv.org/abs/1706.03762, pre-published.

[40] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova. “BERT: Pre-training of Deep Bidirectional
Transformers for Language Understanding.” arXiv: 1810.04805 [cs]. (May 24, 2019), [Online].
Available: http://arxiv.org/abs/1810.04805, pre-published.

[41] A. Radford, K. Narasimhan, T. Salimans, and I. Sutskever, “Improving language understanding by
generative pre-training,” 2018. [Online]. Available: https://www.mikecaptain.com/resources/pdf
/GPT-1.pdf.

[42] A. Radford, J. Wu, R. Child, D. Luan, D. Amodei, and I. Sutskever, “Language models are unsuper-
vised multitask learners,” OpenAI blog, vol. 1, no. 8, p. 9, 2019. [Online]. Available: https://storage
.prod.researchhub.com/uploads/papers/2020/06/01/language-models.pdf.

[43] T. B. Brown, B. Mann, N. Ryder, et al. “Language Models are Few-Shot Learners.” arXiv: 2005.14165
[cs]. (Jul. 22, 2020), [Online]. Available: http://arxiv.org/abs/2005.14165, pre-published.

[44] OpenAI, J. Achiam, S. Adler, et al. “GPT-4 Technical Report.” arXiv: 2303.08774 [cs]. (Mar. 4,
2024), [Online]. Available: http://arxiv.org/abs/2303.08774, pre-published.

[45] Anthropic. “Claude.” (2025), [Online]. Available: https://claude.ai/new.

[46] DeepSeek-AI, D. Guo, D. Yang, et al. “DeepSeek-R1: Incentivizing Reasoning Capability in LLMs
via Reinforcement Learning.” arXiv: 2501.12948 [cs]. (Jan. 22, 2025), [Online]. Available: http://ar
xiv.org/abs/2501.12948, pre-published.

[47] A. Grattafiori, A. Dubey, A. Jauhri, et al. “The Llama 3 Herd of Models.” arXiv: 2407.21783 [cs].
(Nov. 23, 2024), [Online]. Available: http://arxiv.org/abs/2407.21783, pre-published.

[48] OpenAI. “ChatGPT.” (2025), [Online]. Available: https://chatgpt.com.

[49] Google. “ Google Gemini,” Gemini. (2025), [Online]. Available: https://gemini.google.com.

[50] J. Wei, X. Wang, D. Schuurmans, et al. “Chain-of-Thought Prompting Elicits Reasoning in Large
Language Models.” arXiv: 2201.11903 [cs]. (Jan. 10, 2023), [Online]. Available: http://arxiv.org/ab
s/2201.11903, pre-published.

50

https://github.com/AFLplusplus/AFLplusplus
https://llvm.org/
https://llvm.org/
https://www.qemu.org/
https://github.com/unicorn-engine/unicorn
https://github.com/unicorn-engine/unicorn
https://doi.org/10.1145/3490443
https://dl.acm.org/doi/10.1145/3490443
https://dl.acm.org/doi/10.1145/3490443
https://doi.org/10.1007/s43681-024-00583-7
https://doi.org/10.1007/s43681-024-00583-7
https://doi.org/10.1007/s43681-024-00583-7
https://arxiv.org/abs/1409.0473
http://arxiv.org/abs/1409.0473
http://arxiv.org/abs/1409.0473
https://arxiv.org/abs/1706.03762
http://arxiv.org/abs/1706.03762
https://arxiv.org/abs/1810.04805
http://arxiv.org/abs/1810.04805
https://www.mikecaptain.com/resources/pdf/GPT-1.pdf
https://www.mikecaptain.com/resources/pdf/GPT-1.pdf
https://storage.prod.researchhub.com/uploads/papers/2020/06/01/language-models.pdf
https://storage.prod.researchhub.com/uploads/papers/2020/06/01/language-models.pdf
https://arxiv.org/abs/2005.14165
https://arxiv.org/abs/2005.14165
http://arxiv.org/abs/2005.14165
https://arxiv.org/abs/2303.08774
http://arxiv.org/abs/2303.08774
https://claude.ai/new
https://arxiv.org/abs/2501.12948
http://arxiv.org/abs/2501.12948
http://arxiv.org/abs/2501.12948
https://arxiv.org/abs/2407.21783
http://arxiv.org/abs/2407.21783
https://chatgpt.com
https://gemini.google.com
https://arxiv.org/abs/2201.11903
http://arxiv.org/abs/2201.11903
http://arxiv.org/abs/2201.11903

[51] S. Yao, D. Yu, J. Zhao, et al. “Tree of Thoughts: Deliberate Problem Solving with Large Language
Models.” arXiv: 2305.10601 [cs]. (Dec. 3, 2023), [Online]. Available: http://arxiv.org/abs/2305.10601,
pre-published.

[52] P. Lewis, E. Perez, A. Piktus, et al. “Retrieval-Augmented Generation for Knowledge-Intensive NLP
Tasks.” arXiv: 2005.11401 [cs]. (Apr. 12, 2021), [Online]. Available: http://arxiv.org/abs/2005.11401,
pre-published.

[53] S. Yao, J. Zhao, D. Yu, et al. “ReAct: Synergizing Reasoning and Acting in Language Models.” arXiv:
2210.03629. (Mar. 10, 2023), [Online]. Available: http://arxiv.org/abs/2210.03629, pre-published.

[54] Anysphere. “Cursor - The AI Code Editor.” (2025), [Online]. Available: https://cursor.com/.

[55] Microsoft. “GitHub Copilot · Your AI pair programmer,” GitHub. (2025), [Online]. Available:
https://github.com/features/copilot.

[56] E. Nijkamp, B. Pang, H. Hayashi, et al., “CodeGen: An open large language model for code with
multi-turn program synthesis,” ICLR, 2023.

[57] E. Nijkamp, H. Hayashi, C. Xiong, S. Savarese, and Y. Zhou, “CodeGen2: Lessons for training
llms on programming and natural languages,” ICLR, 2023.

[58] OpenAI. “Introducing GPT-4.1 in the API.” (Apr. 14, 2025), [Online]. Available: https://openai.co
m/index/gpt-4-1/.

[59] A. Sarkar and I. Drosos. “Vibe coding: Programming through conversation with artificial intelli-
gence.” arXiv: 2506.23253 [cs]. (Jun. 29, 2025), [Online]. Available: http://arxiv.org/abs/2506.23253,
pre-published.

[60] L. Huang, W. Yu, W. Ma, et al., “A Survey on Hallucination in Large Language Models: Principles,
Taxonomy, Challenges, and Open Questions,” ACM Transactions on Information Systems, vol. 43,
no. 2, pp. 1–55, Mar. 31, 2025, issn: 1046-8188, 1558-2868. doi: 10.1145/3703155. arXiv: 2311.05232
[cs]. [Online]. Available: http://arxiv.org/abs/2311.05232.

[61] J. Kaddour, J. Harris, M. Mozes, H. Bradley, R. Raileanu, and R. McHardy. “Challenges and
Applications of Large Language Models.” arXiv: 2307.10169 [cs]. (Jul. 19, 2023), [Online]. Available:
http://arxiv.org/abs/2307.10169, pre-published.

[62] Y. Deng, C. S. Xia, H. Peng, C. Yang, and L. Zhang, “Large Language Models Are Zero-Shot
Fuzzers: Fuzzing Deep-Learning Libraries via Large Language Models,” in Proceedings of the
32nd ACM SIGSOFT International Symposium on Software Testing and Analysis, ser. ISSTA 2023,
New York, NY, USA: Association for Computing Machinery, Jul. 13, 2023, pp. 423–435, isbn:
979-8-4007-0221-1. doi: 10.1145/3597926.3598067. [Online]. Available: https://dl.acm.org/doi/10.1
145/3597926.3598067.

[63] G. Black, V. Mathew Vaidyan, and G. Comert, “Evaluating Large Language Models for En-
hanced Fuzzing: An Analysis Framework for LLM-Driven Seed Generation,” IEEE Access, vol. 12,
pp. 156 065–156 081, 2024, issn: 2169-3536. doi: 10.1109/ACCESS.2024.3484947. [Online]. Avail-
able: https://ieeexplore.ieee.org/abstract/document/10731701.

[64] W. Shi, Y. Zhang, X. Xing, and J. Xu. “Harnessing Large Language Models for Seed Generation in
Greybox Fuzzing.” arXiv: 2411.18143 [cs]. (Nov. 27, 2024), [Online]. Available: http://arxiv.org/ab
s/2411.18143, pre-published.

[65] Y. Deng, C. S. Xia, C. Yang, S. D. Zhang, S. Yang, and L. Zhang. “Large Language Models are
Edge-Case Fuzzers: Testing Deep Learning Libraries via FuzzGPT.” arXiv: 2304.02014 [cs]. (Apr. 4,
2023), [Online]. Available: http://arxiv.org/abs/2304.02014, pre-published.

51

https://arxiv.org/abs/2305.10601
http://arxiv.org/abs/2305.10601
https://arxiv.org/abs/2005.11401
http://arxiv.org/abs/2005.11401
https://arxiv.org/abs/2210.03629
http://arxiv.org/abs/2210.03629
https://cursor.com/
https://github.com/features/copilot
https://openai.com/index/gpt-4-1/
https://openai.com/index/gpt-4-1/
https://arxiv.org/abs/2506.23253
http://arxiv.org/abs/2506.23253
https://doi.org/10.1145/3703155
https://arxiv.org/abs/2311.05232
https://arxiv.org/abs/2311.05232
http://arxiv.org/abs/2311.05232
https://arxiv.org/abs/2307.10169
http://arxiv.org/abs/2307.10169
https://doi.org/10.1145/3597926.3598067
https://dl.acm.org/doi/10.1145/3597926.3598067
https://dl.acm.org/doi/10.1145/3597926.3598067
https://doi.org/10.1109/ACCESS.2024.3484947
https://ieeexplore.ieee.org/abstract/document/10731701
https://arxiv.org/abs/2411.18143
http://arxiv.org/abs/2411.18143
http://arxiv.org/abs/2411.18143
https://arxiv.org/abs/2304.02014
http://arxiv.org/abs/2304.02014

[66] Y. Jiang, J. Liang, F. Ma, et al., “When Fuzzing Meets LLMs: Challenges and Opportunities,” in
Companion Proceedings of the 32nd ACM International Conference on the Foundations of Software
Engineering, ser. ACM Conferences, Jul. 10, 2024, pp. 492–496, isbn: 979-8-4007-0658-5. doi: 10.1
145/3663529.3663784. [Online]. Available: https://dl.acm.org/doi/abs/10.1145/3663529.3663784.

[67] D. Tilwani, R. Venkataramanan, and A. P. Sheth. “Neurosymbolic AI approach to Attribution in
Large Language Models.” arXiv: 2410.03726. (Sep. 30, 2024), [Online]. Available: http://arxiv.org
/abs/2410.03726, pre-published.

[68] D. Kahneman, Thinking, Fast and Slow, 1st ed. New York: Farrar, Straus and Giroux, 2011, 499 pp.,
isbn: 978-0-374-27563-1 978-0-374-53355-7 978-0-606-27564-4.

[69] A. Mastropaolo and D. Poshyvanyk. “A Path Less Traveled: Reimagining Software Engineering
Automation via a Neurosymbolic Paradigm.” arXiv: 2505.02275 [cs]. (May 4, 2025), [Online].
Available: http://arxiv.org/abs/2505.02275, pre-published.

[70] A. Velasco, A. Garryyeva, D. N. Palacio, A. Mastropaolo, and D. Poshyvanyk. “Toward Neu-
rosymbolic Program Comprehension.” arXiv: 2502.01806 [cs]. (Feb. 3, 2025), [Online]. Available:
http://arxiv.org/abs/2502.01806, pre-published.

[71] A. Sheth, K. Roy, and M. Gaur. “Neurosymbolic AI – Why, What, and How.” arXiv: 2305.00813
[cs]. (May 1, 2023), [Online]. Available: http://arxiv.org/abs/2305.00813, pre-published.

[72] A. d’Avila Garcez and L. C. Lamb. “Neurosymbolic AI: The 3rd Wave.” arXiv: 2012.05876. (Dec. 16,
2020), [Online]. Available: http://arxiv.org/abs/2012.05876, pre-published.

[73] D. Ganguly, S. Iyengar, V. Chaudhary, and S. Kalyanaraman. “Proof of Thought : Neurosymbolic
Program Synthesis allows Robust and Interpretable Reasoning.” arXiv: 2409.17270. (Sep. 25, 2024),
[Online]. Available: http://arxiv.org/abs/2409.17270, pre-published.

[74] M. Gaur and A. Sheth. “Building Trustworthy NeuroSymbolic AI Systems: Consistency, Reliability,
Explainability, and Safety.” arXiv: 2312.06798. (Dec. 5, 2023), [Online]. Available: http://arxiv.org
/abs/2312.06798, pre-published.

[75] M. K. Sarker, L. Zhou, A. Eberhart, and P. Hitzler, “Neuro-symbolic artificial intelligence: Current
trends,” AI Communications, vol. 34, no. 3, pp. 197–209, Mar. 4, 2022, issn: 1875-8452, 0921-7126.
doi: 10.3233/aic-210084. [Online]. Available: https://journals.sagepub.com/doi/full/10.3233/AIC-2
10084.

[76] H. Kautz, “The Third AI Summer,” Lecture, presented at the 34th Annual Meeting of the Associa-
tion for the Advancement of Artificial Intelligence (New York, NY, USA), Feb. 10, 2020. [Online].
Available: https://www.youtube.com/watch?v=_cQITY0SPiw.

[77] L. Torvalds, Git, Apr. 7, 2005. [Online]. Available: https://git-scm.com/.

[78] T. Mikolov, K. Chen, G. Corrado, and J. Dean. “Efficient Estimation of Word Representations in
Vector Space.” arXiv: 1301.3781 [cs]. (Sep. 6, 2013), [Online]. Available: http://arxiv.org/abs/1301
.3781, pre-published.

[79] Y. Sun, “Automated Generation and Compilation of Fuzz Driver Based on Large Language
Models,” in Proceedings of the 2024 9th International Conference on Cyber Security and Information
Engineering, ser. ICCSIE ’24, New York, NY, USA: Association for Computing Machinery, Dec. 3,
2024, pp. 461–468, isbn: 979-8-4007-1813-7. doi: 10.1145/3689236.3689272. [Online]. Available:
https://doi.org/10.1145/3689236.3689272.

[80] A. Arya, O. Chang, J. Metzman, K. Serebryany, and D. Liu, OSS-Fuzz, Apr. 8, 2025. [Online].
Available: https://github.com/google/oss-fuzz.

52

https://doi.org/10.1145/3663529.3663784
https://doi.org/10.1145/3663529.3663784
https://dl.acm.org/doi/abs/10.1145/3663529.3663784
https://arxiv.org/abs/2410.03726
http://arxiv.org/abs/2410.03726
http://arxiv.org/abs/2410.03726
https://arxiv.org/abs/2505.02275
http://arxiv.org/abs/2505.02275
https://arxiv.org/abs/2502.01806
http://arxiv.org/abs/2502.01806
https://arxiv.org/abs/2305.00813
https://arxiv.org/abs/2305.00813
http://arxiv.org/abs/2305.00813
https://arxiv.org/abs/2012.05876
http://arxiv.org/abs/2012.05876
https://arxiv.org/abs/2409.17270
http://arxiv.org/abs/2409.17270
https://arxiv.org/abs/2312.06798
http://arxiv.org/abs/2312.06798
http://arxiv.org/abs/2312.06798
https://doi.org/10.3233/aic-210084
https://journals.sagepub.com/doi/full/10.3233/AIC-210084
https://journals.sagepub.com/doi/full/10.3233/AIC-210084
https://www.youtube.com/watch?v=_cQITY0SPiw
https://git-scm.com/
https://arxiv.org/abs/1301.3781
http://arxiv.org/abs/1301.3781
http://arxiv.org/abs/1301.3781
https://doi.org/10.1145/3689236.3689272
https://doi.org/10.1145/3689236.3689272
https://github.com/google/oss-fuzz

[81] Open Source Security Foundation (OpenSSF), Ossf/fuzz-introspector, Open Source Security Foun-
dation (OpenSSF), Jun. 30, 2025. [Online]. Available: https://github.com/ossf/fuzz-introspector.

[82] Python Software Foundation. “Venv — Creation of virtual environments,” Python documentation.
(Jul. 17, 2025), [Online]. Available: https://docs.python.org/3/library/venv.html.

[83] pip developers. “Pip documentation v25.1.1.” (2025), [Online]. Available: https://pip.pypa.io/en/st
able/.

[84] D. A. Wheeler. “Flawfinder Home Page,” Flawfinder. (), [Online]. Available: https://dwheeler.com
/flawfinder/.

[85] S. Zhao, Y. Yang, Z. Wang, Z. He, L. K. Qiu, and L. Qiu. “Retrieval Augmented Generation (RAG)
and Beyond: A Comprehensive Survey on How to Make your LLMs use External Data More
Wisely.” arXiv: 2409.14924 [cs]. (Sep. 23, 2024), [Online]. Available: http://arxiv.org/abs/2409.149
24, pre-published.

[86] M. Chen, J. Tworek, H. Jun, et al. “Evaluating Large Language Models Trained on Code.” arXiv:
2107.03374 [cs]. (Jul. 14, 2021), [Online]. Available: http://arxiv.org/abs/2107.03374, pre-published.

[87] A. Cedilnik, B. Hoffman, B. King, K. Martin, and A. Neundorf, CMake - Upgrade Your Software
Build System, 2000. [Online]. Available: https://cmake.org/.

[88] S. I. Feldman, “Make — a program for maintaining computer programs,” Software: Practice and
Experience, vol. 9, no. 4, pp. 255–265, 1979, issn: 1097-024X. doi: 10.1002/spe.4380090402. [Online].
Available: https://onlinelibrary.wiley.com/doi/abs/10.1002/spe.4380090402.

[89] T. He, Sighingnow/libclang, Jul. 3, 2025. [Online]. Available: https://github.com/sighingnow/libcla
ng.

[90] OpenAI Docs. “Text-embedding-3-small - OpenAI API.” (2025), [Online]. Available: https://platfo
rm.openai.com.

[91] M. Douze, A. Guzhva, C. Deng, et al. “The Faiss library.” arXiv: 2401.08281 [cs]. (Feb. 11, 2025),
[Online]. Available: http://arxiv.org/abs/2401.08281, pre-published.

[92] O. Khattab, A. Singhvi, P. Maheshwari, et al. “DSPy: Compiling Declarative Language Model
Calls into Self-Improving Pipelines.” arXiv: 2310.03714 [cs]. (Oct. 5, 2023), [Online]. Available:
http://arxiv.org/abs/2310.03714, pre-published.

[93] Stanford NLP Team. “Signatures - DSPy Documentation.” (2025), [Online]. Available: https://dsp
y.ai/learn/programming/signatures/.

[94] Stanford NLP Team. “ReAct - DSPy Documentation.” (2025), [Online]. Available: https://dspy.ai/a
pi/modules/ReAct/.

[95] H. Chase, LangChain, Oct. 2022. [Online]. Available: https://github.com/langchain-ai/langchain.

[96] J. Liu, LlamaIndex, Nov. 2022. doi: 10.5281/zenodo.1234. [Online]. Available: https://github.com/j
erryjliu/llama_index.

[97] F. Both. “Why we no longer use LangChain for building our AI agents.” (2024), [Online]. Available:
https://octomind.dev/blog/why-we-no-longer-use-langchain-for-building-our-ai-agents.

[98] M. Woolf. “The Problem With LangChain.” (Jul. 14, 2023), [Online]. Available: https://minimaxir
.com/2023/07/langchain-problem/.

[99] Woyera. “6 Reasons why Langchain Sucks,” Medium. (Sep. 8, 2023), [Online]. Available: https://m
edium.com/@woyera/6-reasons-why-langchain-sucks-b6c99c98efbe.

[100] Astral, Astral-sh/uv, Astral, Jul. 18, 2025. [Online]. Available: https://github.com/astral-sh/uv.

53

https://github.com/ossf/fuzz-introspector
https://docs.python.org/3/library/venv.html
https://pip.pypa.io/en/stable/
https://pip.pypa.io/en/stable/
https://dwheeler.com/flawfinder/
https://dwheeler.com/flawfinder/
https://arxiv.org/abs/2409.14924
http://arxiv.org/abs/2409.14924
http://arxiv.org/abs/2409.14924
https://arxiv.org/abs/2107.03374
http://arxiv.org/abs/2107.03374
https://cmake.org/
https://doi.org/10.1002/spe.4380090402
https://onlinelibrary.wiley.com/doi/abs/10.1002/spe.4380090402
https://github.com/sighingnow/libclang
https://github.com/sighingnow/libclang
https://platform.openai.com
https://platform.openai.com
https://arxiv.org/abs/2401.08281
http://arxiv.org/abs/2401.08281
https://arxiv.org/abs/2310.03714
http://arxiv.org/abs/2310.03714
https://dspy.ai/learn/programming/signatures/
https://dspy.ai/learn/programming/signatures/
https://dspy.ai/api/modules/ReAct/
https://dspy.ai/api/modules/ReAct/
https://github.com/langchain-ai/langchain
https://doi.org/10.5281/zenodo.1234
https://github.com/jerryjliu/llama_index
https://github.com/jerryjliu/llama_index
https://octomind.dev/blog/why-we-no-longer-use-langchain-for-building-our-ai-agents
https://minimaxir.com/2023/07/langchain-problem/
https://minimaxir.com/2023/07/langchain-problem/
https://medium.com/@woyera/6-reasons-why-langchain-sucks-b6c99c98efbe
https://medium.com/@woyera/6-reasons-why-langchain-sucks-b6c99c98efbe
https://github.com/astral-sh/uv

[101] Astral, Astral-sh/ruff, Astral, Jul. 18, 2025. [Online]. Available: https://github.com/astral-sh/ruff.

[102] A. Cortesi, M. Hils, and T. Kriechbaumer, Mitmproxy/pdoc, mitmproxy, Jul. 18, 2025. [Online].
Available: https://github.com/mitmproxy/pdoc.

[103] PyTest Dev Team, Pytest-dev/pytest, pytest-dev, Jul. 18, 2025. [Online]. Available: https://github.c
om/pytest-dev/pytest.

[104] Python Software Foundation, Python/mypy, Python, Jul. 18, 2025. [Online]. Available: https://git
hub.com/python/mypy.

[105] Clibs Project. “Clib Packages,” GitHub. (2025), [Online]. Available: https://github.com/clibs/clib
/wiki/Packages.

[106] Clibs Project, Clibs/clib, clibs, Jul. 1, 2025. [Online]. Available: https://github.com/clibs/clib.

[107] OpenAI Docs. “GPT-4.1 mini - Open AI API.” (2025), [Online]. Available: https://platform.openai
.com.

[108] GitHub Docs. “About GitHub-hosted runners,” GitHub Docs. (2025), [Online]. Available: https:
//docs-internal.github.com/en/actions/concepts/runners/about-github-hosted-runners.

[109] GitHub Docs. “Choosing the runner for a job,” GitHub Docs. (2025), [Online]. Available: https://d
ocs-internal.github.com/en/actions/how-tos/writing-workflows/choosing-where-your-workflow
-runs/choosing-the-runner-for-a-job.

[110] O. I. Franksen, “Babbage and cryptography. Or, the mystery of Admiral Beaufort’s cipher,”
Mathematics and Computers in Simulation, vol. 35, no. 4, pp. 327–367, 1993. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/037847549390063Z.

[111] F. Bacon, Of the Proficience and Advancement of Learning... Edited by the Rev. GW Kitchin. Bell &
Daldy, 1861.

[112] T. Preston-Werner. “Semantic Versioning 2.0.0,” Semantic Versioning. (), [Online]. Available:
https://semver.org/.

[113] D. Giannone. “Demystifying AI Agents: ReAct-Style Agents vs Agentic Workflows,” Medium.
(Feb. 9, 2025), [Online]. Available: https://medium.com/@DanGiannone/demystifying-ai-agents-
react-style-agents-vs-agentic-workflows-cedca7e26471.

[114] OpenAI Docs. “Model optimization - OpenAI API.” (2025), [Online]. Available: https://platform.o
penai.com.

[115] S. Kim and S.-y. Lee, “Performance Comparison of Prompt Engineering and Fine-Tuning Ap-
proaches for Fuzz Driver Generation Using Large Language Models,” in Innovative Mobile and
Internet Services in Ubiquitous Computing, L. Barolli, H.-C. Chen, and K. Yim, Eds., Cham: Springer
Nature Switzerland, 2025, pp. 111–120, isbn: 978-3-031-96093-2. doi: 10.1007/978-3-031-96093-2
_12.

[116] Z. Li, S. Dutta, and M. Naik. “IRIS: LLM-Assisted Static Analysis for Detecting Security Vulnerabil-
ities.” arXiv: 2405.17238 [cs]. (Apr. 6, 2025), [Online]. Available: http://arxiv.org/abs/2405.17238,
pre-published.

[117] D. Wang, G. Zhou, L. Chen, D. Li, and Y. Miao. “ProphetFuzz: Fully Automated Prediction and
Fuzzing of High-Risk Option Combinations with Only Documentation via Large Language
Model.” arXiv: 2409.00922 [cs]. (Sep. 1, 2024), [Online]. Available: http://arxiv.org/abs/2409.00922,
pre-published.

54

https://github.com/astral-sh/ruff
https://github.com/mitmproxy/pdoc
https://github.com/pytest-dev/pytest
https://github.com/pytest-dev/pytest
https://github.com/python/mypy
https://github.com/python/mypy
https://github.com/clibs/clib/wiki/Packages
https://github.com/clibs/clib/wiki/Packages
https://github.com/clibs/clib
https://platform.openai.com
https://platform.openai.com
https://docs-internal.github.com/en/actions/concepts/runners/about-github-hosted-runners
https://docs-internal.github.com/en/actions/concepts/runners/about-github-hosted-runners
https://docs-internal.github.com/en/actions/how-tos/writing-workflows/choosing-where-your-workflow-runs/choosing-the-runner-for-a-job
https://docs-internal.github.com/en/actions/how-tos/writing-workflows/choosing-where-your-workflow-runs/choosing-the-runner-for-a-job
https://docs-internal.github.com/en/actions/how-tos/writing-workflows/choosing-where-your-workflow-runs/choosing-the-runner-for-a-job
https://www.sciencedirect.com/science/article/pii/037847549390063Z
https://semver.org/
https://medium.com/@DanGiannone/demystifying-ai-agents-react-style-agents-vs-agentic-workflows-cedca7e26471
https://medium.com/@DanGiannone/demystifying-ai-agents-react-style-agents-vs-agentic-workflows-cedca7e26471
https://platform.openai.com
https://platform.openai.com
https://doi.org/10.1007/978-3-031-96093-2_12
https://doi.org/10.1007/978-3-031-96093-2_12
https://arxiv.org/abs/2405.17238
http://arxiv.org/abs/2405.17238
https://arxiv.org/abs/2409.00922
http://arxiv.org/abs/2409.00922

[118] H. Green and T. Avgerinos, “GraphFuzz: Library API fuzzing with lifetime-aware dataflow
graphs,” in Proceedings of the 44th International Conference on Software Engineering, Pittsburgh
Pennsylvania: ACM, May 21, 2022, pp. 1070–1081. doi: 10 .1145/3510003 .3510228. [Online].
Available: https://dl.acm.org/doi/10.1145/3510003.3510228.

[119] C. Cadar, D. Dunbar, and D. Engler, “KLEE: Unassisted and Automatic Generation of High-
Coverage Tests for Complex Systems Programs,” presented at the USENIX Symposium on Oper-
ating Systems Design and Implementation, Dec. 8, 2008. [Online]. Available: https://www.seman
ticscholar.org/paper/KLEE%3A-Unassisted-and-Automatic-Generation-of-Tests-Cadar-Dunbar/0
b93657965e506dfbd56fbc1c1d4b9666b1d01c8.

[120] M. Zhang, J. Liu, F. Ma, H. Zhang, and Y. Jiang. “IntelliGen: Automatic Driver Synthesis for
FuzzTesting.” arXiv: 2103.00862 [cs]. (Mar. 1, 2021), [Online]. Available: http://arxiv.org/abs/2103
.00862, pre-published.

[121] H. Xu, W. Ma, T. Zhou, et al. “CKGFuzzer: LLM-Based Fuzz Driver Generation Enhanced By Code
Knowledge Graph.” arXiv: 2411.11532 [cs]. (Dec. 20, 2024), [Online]. Available: http://arxiv.org/a
bs/2411.11532, pre-published.

[122] N. Sasirekha, A. Edwin Robert, and M. Hemalatha, “Program Slicing Techniques and its Applica-
tions,” International Journal of Software Engineering & Applications, vol. 2, no. 3, pp. 50–64, Jul. 31,
2011, issn: 09762221. doi: 10.5121/ijsea.2011.2304. [Online]. Available: http://www.airccse.org/jo
urnal/ijsea/papers/0711ijsea04.pdf.

[123] OSS-Fuzz. “OSS-Fuzz Documentation,” OSS-Fuzz. (2025), [Online]. Available: https://google.githu
b.io/oss-fuzz/.

[124] Google, Google/clusterfuzz, Google, Apr. 9, 2025. [Online]. Available: https://github.com/google/c
lusterfuzz.

[125] Google, Google/fuzztest, Google, Jul. 10, 2025. [Online]. Available: https://github.com/google/fuzz
test.

[126] Google, Google/honggfuzz, Google, Jul. 10, 2025. [Online]. Available: https://github.com/google/h
onggfuzz.

[127] D. Liu, J. Metzman, O. Chang, and G. O. S. S. Team. “AI-Powered Fuzzing: Breaking the Bug
Hunting Barrier,” Google Online Security Blog. (Aug. 16, 2023), [Online]. Available: https://securi
ty.googleblog.com/2023/08/ai-powered-fuzzing-breaking-bug-hunting.html.

[128] L. Thomason, Leethomason/tinyxml2, Jul. 10, 2025. [Online]. Available: https://github.com/leetho
mason/tinyxml2.

[129] OSS-Fuzz Maintainers. “Introducing LLM-based harness synthesis for unfuzzed projects,” OSS-
Fuzz blog. (May 27, 2024), [Online]. Available: https://blog.oss-fuzz.com/posts/introducing-llm-b
ased-harness-synthesis-for-unfuzzed-projects/.

[130] E. Martin, Ninja-build/ninja, ninja-build, Jul. 14, 2025. [Online]. Available: https://github.com/nin
ja-build/ninja.

[131] J. Pakkanen, Mesonbuild/meson, The Meson Build System, Jul. 14, 2025. [Online]. Available:
https://github.com/mesonbuild/meson.

[132] Google, Google/atheris, Google, Apr. 9, 2025. [Online]. Available: https://github.com/google/ather
is.

55

https://doi.org/10.1145/3510003.3510228
https://dl.acm.org/doi/10.1145/3510003.3510228
https://www.semanticscholar.org/paper/KLEE%3A-Unassisted-and-Automatic-Generation-of-Tests-Cadar-Dunbar/0b93657965e506dfbd56fbc1c1d4b9666b1d01c8
https://www.semanticscholar.org/paper/KLEE%3A-Unassisted-and-Automatic-Generation-of-Tests-Cadar-Dunbar/0b93657965e506dfbd56fbc1c1d4b9666b1d01c8
https://www.semanticscholar.org/paper/KLEE%3A-Unassisted-and-Automatic-Generation-of-Tests-Cadar-Dunbar/0b93657965e506dfbd56fbc1c1d4b9666b1d01c8
https://arxiv.org/abs/2103.00862
http://arxiv.org/abs/2103.00862
http://arxiv.org/abs/2103.00862
https://arxiv.org/abs/2411.11532
http://arxiv.org/abs/2411.11532
http://arxiv.org/abs/2411.11532
https://doi.org/10.5121/ijsea.2011.2304
http://www.airccse.org/journal/ijsea/papers/0711ijsea04.pdf
http://www.airccse.org/journal/ijsea/papers/0711ijsea04.pdf
https://google.github.io/oss-fuzz/
https://google.github.io/oss-fuzz/
https://github.com/google/clusterfuzz
https://github.com/google/clusterfuzz
https://github.com/google/fuzztest
https://github.com/google/fuzztest
https://github.com/google/honggfuzz
https://github.com/google/honggfuzz
https://security.googleblog.com/2023/08/ai-powered-fuzzing-breaking-bug-hunting.html
https://security.googleblog.com/2023/08/ai-powered-fuzzing-breaking-bug-hunting.html
https://github.com/leethomason/tinyxml2
https://github.com/leethomason/tinyxml2
https://blog.oss-fuzz.com/posts/introducing-llm-based-harness-synthesis-for-unfuzzed-projects/
https://blog.oss-fuzz.com/posts/introducing-llm-based-harness-synthesis-for-unfuzzed-projects/
https://github.com/ninja-build/ninja
https://github.com/ninja-build/ninja
https://github.com/mesonbuild/meson
https://github.com/google/atheris
https://github.com/google/atheris

A. Abandoned Techniques

During its development, OverHAuL went through several iterations. A number of approaches
were implemented and evaluated, with some being replaced for better alternatives. These are:

1. One-shot harness generation

Before the iterative feedback loop (Section 3.3.1) was implemented, OverHAuL attempted
to operate in a straightforward pipeline, with just a “generator” agent being tasked to
generate the harness. This meant that at either the compilation step or evaluation step,
any failure resulted in the execution being terminated. This approach put too much
responsibility in the response of a single LLM query, with results more often than not
being unsatisfactory.

2. Chain-of-Thought LLM instances

The current implementation of ReAct agents has effectively supplanted the less effective
Chain of Thought (COT) LLM modules [50]. This shift underscores a critical realization
in the harness generation process: the primary challenge lies not in the creation of the
harness itself, but rather in the necessity for real-time feedback during execution. This is
the reason why first employing COT prompting offered limited observed improvements.

COT techniques are particularly advantageous when the task assigned to the LLM de-
mands a more reflective, in-depth analysis. However, when it comes to tasks such as
knowledge extraction from a codebase oracle and taking live feedback from the environ-
ment into consideration, ReAct agents demonstrate greater efficiency and effectiveness.

3. Source code concatenation

Initially, there was no implementation of a codebase oracle. Instead, the LLM agents
operated with a Python string that contained a concatenation of all the collected source
code. While this method proved effective for smaller and simpler projects, it encountered
significant limitations when applied to more complex codebases. The primary challenge
was the excessive consumption of the LLM’s context window, which hindered its ability
to process and analyze larger codebases effectively. As a result, this approach became
increasingly unsustainable as project complexity grew, underscoring the need for a more
robust solution.

4. {index, read}_tool usage for ReAct agents

The predecessor of the oracle comprised a dual-system approach for code exploration,
integrating the index_tool and the read_tool. The index_tool offered the LLM agent a

56

structured JSON object that delineated the project’s architecture, including all relevant
file paths. On the other hand, the read_tool required a file path as input and returned the
file’s content, albeit truncated to a maximum of 4000 characters. While this methodology
presented an improvement in scalability over earlier systems, several limitations persisted.

Firstly, the LLM was constrained to searching through the codebase strictly in file-specific
terms, which limited its efficacy in understanding the broader context of code relationships.
Furthermore, the imposed character limit on the read_tool meant that certain portions of
the codebase remained inaccessible, impeding the agent’s analytical capabilities. Even if
this character limit were to be lifted, the resultant output would still occupy a significant
portion of the context window, particularly in larger and more intricate projects. As such,
while this approach offered advancements in code exploration, it still fell short.

57

B. Sample Generated Harnesses

This appendix presents a selection of harnesses generated by OverHAuL, originating from the
benchmark run 16351915455. The examples included herein demonstrate a notable diversity,
ranging from concise and straightforward harnesses to those that are more elaborate and
complex. The crash inputs are provided in the form of their corresponding xxd hexadecimal
representations.

B.1. clibs/buffer

Generated harness:

1 #include "buffer.h"

2 #include <stdint.h>

3 #include <stdio.h>

4 #include <stdlib.h>

5 #include <string.h>

6

7 /*

8 * LLVMFuzzerTestOneInput harness to fuzz the function buffer_appendf.

9 *

10 * The fuzzing input data is treated as a format string argument to

11 * buffer_appendf. This targets potential format string vulnerabilities and

12 * buffer resizing issues within buffer_appendf as flagged by static analysis.

13 *

14 * We create a fresh buffer_t instance with buffer_new(), then call

15 * buffer_appendf() with the fuzz input as the format string. We do not supply

16 * additional variadic arguments as the input is a single buffer.

17 *

18 * After the call, we free the buffer_t instance to avoid memory leaks.

19 ⁎/

20 int

21 LLVMFuzzerTestOneInput (const uint8_t *data, size_t size)

22 {

23 if (size == 0)

24 {

58

https://github.com/kchousos/OverHAuL/actions/runs/16351915455

25 // No data to test; skip

26 return 0;

27 }

28

29 // Allocate a writable null-terminated string for the format input

30 // We add one byte for the null terminator

31 char *fmt = (char *)malloc (size + 1);

32 if (!fmt)

33 return 0; // Allocation failed, skip

34

35 // Copy input and null terminate

36 memcpy (fmt, data, size);

37 fmt[size] = '\0';

38

39 // Create a new buffer instance

40 buffer_t *buf = buffer_new ();

41 if (!buf)

42 {

43 free (fmt);

44 return 0;

45 }

46

47 // Call buffer_appendf with user-controlled format string

48 // No additional arguments are supplied

49 (void)buffer_appendf (buf, fmt);

50

51 // Cleanup

52 buffer_free (buf);

53 free (fmt);

54

55 return 0;

56 }

Body of function that the harness targets:

1 int buffer_appendf(buffer_t *self, const char *format, ...) {

2 va_list ap;

3 va_list tmpa;

4 char *dst = NULL;

5 int length = 0;

6 int required = 0;

7 int bytes = 0;

8

59

9 va_start(ap, format);

10

11 length = buffer_length(self);

12

13 // First, we compute how many bytes are needed

14 // for the formatted string and allocate that

15 // much more space in the buffer.

16 va_copy(tmpa, ap);

17 required = vsnprintf(NULL, 0, format, tmpa);

18 va_end(tmpa);

19 if (-1 == buffer_resize(self, length + required)) {

20 va_end(ap);

21 return -1;

22 }

23

24 // Next format the string into the space that we

25 // have made room for.

26 dst = self->data + length;

27 bytes = vsnprintf(dst, 1 + required, format, ap);

28 va_end(ap);

29

30 return bytes < 0

31 ? -1

32 : 0;

33 }

Crash input which triggers an exception in buffer_appendf()>vsnprintf():

00000000: 1b2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d .---------------

00000010: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d ----------------

00000020: 2d2d 2d2d 2d2d 2d2d 2d2d 2d25 2d2d 2d2d -----------%----

00000030: 2d2d 2d2d 2d2d 2d2d 2d2d 2d2d 2d -------------

B.2. willemt/cbuffer

Generated harness:

1 #include "cbuffer.h"

2 #include <stddef.h>

3 #include <stdint.h>

4 #include <stdlib.h>

60

5 #include <string.h>

6

7 // New improved fuzzer harness for cbuf_offer with multiple writes and boundary

8 // tests

9 int

10 LLVMFuzzerTestOneInput (const uint8_t *data, size_t size)

11 {

12 if (size == 0)

13 {

14 // allow zero-size input to test zero-length write

15 cbuf_t *cbuf = cbuf_new (12);

16 if (cbuf == NULL)

17 return 0;

18 // calling offer with zero length should be tested

19 (void)cbuf_offer (cbuf, NULL, 0);

20 cbuf_free (cbuf);

21 return 0;

22 }

23

24 cbuf_t *cbuf = cbuf_new (12);

25 if (cbuf == NULL)

26 return 0;

27

28 // Split input roughly into two parts; first fills the buffer partially,

29 // second part is used for fuzzing cbuf_offer calls

30 size_t split = size / 2;

31 const uint8_t *prefix_data = data;

32 size_t prefix_size = split;

33 const uint8_t *main_data = data + split;

34 size_t main_size = size - split;

35

36 // Initially fill the buffer partially with prefix_data to simulate used

37 // space

38 if (prefix_size > 0)

39 {

40 int space = cbuf_unusedspace (cbuf);

41 int to_write

42 = prefix_size < (size_t)space ? (int)prefix_size : space - 1;

43 if (to_write > 0)

44 {

45 (void)cbuf_offer (cbuf, prefix_data, to_write);

46 }

47 }

61

48

49 // Now fuzz cbuf_offer with main_data

50 // Derive write size from first byte of main_data if available, else zero.

51 int write_size = 0;

52 if (main_size > 0)

53 {

54 write_size = main_data[0];

55 // Allow write size to be zero (edge case) and up to larger than buffer

56 // size to test rejection path Normalize write_size to a range: 0 to 2 *

57 // cbuf->size to test boundary and overflow cases clearly

58 int max_test_size = (int)(cbuf->size * 2);

59 write_size

60 = (write_size

61 % (max_test_size + 1)); // allows 0 to max_test_size inclusive

62 }

63

64 // Pointer to data for writing is after first byte in main_data if exists

65 const uint8_t *write_data = main_data + 1;

66 size_t write_data_len = (main_size > 0) ? main_size - 1 : 0;

67

68 // Clamp write_size to write_data_len but allow write_size > write_data_len

69 // to simulate out of bounds sizes by assigning write_data_len as is -- note

70 // cbuf_offer will only read up to write_size bytes anyway but fuzzing with

71 // invalid sizes tests boundary conditions.

72

73 if ((size_t)write_size > write_data_len)

74 {

75 // We keep write_size as is for boundary fuzzing (even if it overflows

76 // input), but avoid buffer overflow by passing smaller data pointer as

77 // NULL if no data available

78 if (write_data_len == 0)

79 {

80 write_data = NULL;

81 }

82 }

83

84 // Call cbuf_offer with fuzz parameters (including zero and oversized writes)

85 (void)cbuf_offer (cbuf, write_data, write_size);

86

87 // Additionally try a zero length call explicitly to test that edge case

88 (void)cbuf_offer (cbuf, NULL, 0);

89

90 // Optionally perform a few repeated calls with no data to simulate further

62

91 // state changes

92 (void)cbuf_offer (cbuf, NULL, 0);

93 (void)cbuf_offer (cbuf, NULL, 0);

94

95 cbuf_free (cbuf);

96 return 0;

97 }

Body of function that the harness targets:

1 int cbuf_offer(cbuf_t *me, const unsigned char *data, const int size)

2 {

3 /* prevent buffer from getting completely full or over commited ⁎/

4 if (cbuf_unusedspace(me) <= size)

5 return 0;

6

7 int written = cbuf_unusedspace(me);

8 written = size < written ? size : written;

9 memcpy(me->data + me->tail, data, written);

10 me->tail += written;

11 if (me->size < me->tail)

12 me->tail %= me->size;

13 return written;

14 }

Crash input which triggers an exception in cbuf_offer()>memcpy():

00000000: 0a .

B.3. dvhar/dateparse

Generated harness:

1 #include <stddef.h>

2 #include <stdint.h>

3 #include "dateparse.h"

4

5 // LibFuzzer entry point

6 int LLVMFuzzerTestOneInput(const uint8_t *data, size_t size) {

7 if (size == 0) return 0;

8

63

9 date_t parsed_date = 0;

10 int offset = 0;

11

12 // Pass the input data directly without copying

13 (void)dateparse((const char *)data, &parsed_date, &offset, (int)size);

14

15 return 0;

16 }

Body of function that the harness targets:

1 int dateparse(const char* datestr, date_t* t, int *offset, int stringlen){

2 struct parser p;

3 *t = 0;

4 if (!stringlen)

5 stringlen = strlen(datestr);

6 if (parseTime(datestr, &p, stringlen))

7 return -1;

8 return parse(&p, t, offset);

9 }

Crash input that causes a heap buffer overflow in dateparse()>parseTime()>setMonth()>strncpy().

00000000: 6632 2066 f2 f

B.4. h2non/semver.c

Generated harness:

1 #include "semver.h"

2 #include <stdint.h>

3 #include <stdlib.h>

4 #include <string.h>

5

6 // Enhanced fuzzer harness for semver_parse including calls to semver_numeric

7 // and semver_render to help increase coverage and trigger more bugs faster.

8 // Dynamically allocates input buffer with no size limit other than system

9 // memory. Frees allocated semver_t string members after use.

10 int

11 LLVMFuzzerTestOneInput (const uint8_t *data, size_t size)

12 {

64

13 // Allocate buffer dynamically to handle any input size.

14 char *input_str = (char *)malloc (size + 1);

15 if (input_str == NULL)

16 {

17 return 0;

18 }

19 memcpy (input_str, data, size);

20 input_str[size] = '\0';

21

22 semver_t ver;

23 memset (&ver, 0, sizeof (ver));

24

25 // Parse the semver string.

26 (void)semver_parse (input_str, &ver);

27

28 // Call semver_numeric to exercise more code paths.

29 (void)semver_numeric (&ver);

30

31 // Call semver_render with buffer large enough for rendered output.

32 // Typical semantic version strings are short, but use a buffer of size

33 // size+20 to be safe.

34 char *render_buf = (char *)malloc (size + 20);

35 if (render_buf != NULL)

36 {

37 memset (render_buf, 0, size + 20);

38 semver_render (&ver, render_buf);

39 free (render_buf);

40 }

41

42 // Free dynamically allocated members inside semver_t.

43 if (ver.prerelease)

44 {

45 free (ver.prerelease);

46 ver.prerelease = NULL;

47 }

48 if (ver.metadata)

49 {

50 free (ver.metadata);

51 ver.metadata = NULL;

52 }

53

54 free (input_str);

55 return 0;

65

56 }

Bodies of functions that the harness targets:

1 /**

2 * Parses a string as semver expression.

3 *

4 * Returns:

5 *

6 * `0` - Parsed successfully

7 * `-1` - In case of error

8 ⁎/

9

10 int

11 semver_parse (const char *str, semver_t *ver)

12 {

13 int valid, res;

14 size_t len;

15 char *buf;

16 valid = semver_is_valid (str);

17 if (!valid)

18 return -1;

19

20 len = strlen (str);

21 buf = (char *)calloc (len + 1, sizeof (*buf));

22 if (buf == NULL)

23 return -1;

24 strcpy (buf, str);

25

26 ver->metadata = parse_slice (buf, MT_DELIMITER[0]);

27 ver->prerelease = parse_slice (buf, PR_DELIMITER[0]);

28

29 res = semver_parse_version (buf, ver);

30 free (buf);

31 #if DEBUG > 0

32 printf ("[debug] semver.c %s = %d.%d.%d, %s %s\n", str, ver->major,

33 ver->minor, ver->patch, ver->prerelease, ver->metadata);

34 #endif

35 return res;

36 }

37

38 //...

39

66

40 /**

41 * Render a given semver as string

42 ⁎/

43

44 void

45 semver_render (semver_t *x, char *dest)

46 {

47 concat_num (dest, x->major, NULL);

48 concat_num (dest, x->minor, DELIMITER);

49 concat_num (dest, x->patch, DELIMITER);

50 if (x->prerelease)

51 concat_char (dest, x->prerelease, PR_DELIMITER);

52 if (x->metadata)

53 concat_char (dest, x->metadata, MT_DELIMITER);

54 }

Crash input that causes a stack buffer overflow in semver_render()>concat_char()>sprintf():

00000000: 392d 2b2b 2b2b 2b2b 2b2b 2b2b 2b2b 2b2b 9-++++++++++++++

00000010: 2b2b 2b2b 2b2b 2b2b 2b2b 2b2b 2b2b 2b2b ++++++++++++++++

00000020: 2b2b 2b2b 2b2b 2b2b 2b2b 2b2b 2b2b 2b2b ++++++++++++++++

00000030: 2b2b 2b2b 2b2b 2b2b 2b2b 2b2b 2b2b 2b2b ++++++++++++++++

00000040: 2b2b 2b2b 2b2b 2b46 4c +++++++FL

67

C. DSPy Custom Signatures

1 class GenerateHarness(dspy.Signature):

2 """

3 You are an experienced C/C++ security testing engineer. You must write a

4 libFuzzer-compatible `int LLVMFuzzerTestOneInput(const uint8_t *data, size_t

5 size)` harness for a function of the given C project. Your goal is for the

6 harness to be ready for compilation and for it to find successfully a bug in

7 the function-under-test. Write verbose (within reason) and helpful comments

8 on each step/decision you take/make, especially if you use "weird" constants

9 or values that have something to do with the project.

10

11 You have access to a rag_tool, which contains a vector store of

12 function-level chunks of the project. Use it to write better harnesses. Keep

13 in mind that it can only reply with function chunks, do not ask it to

14 combine stuff.

15

16 The rag_tool does not store any information on which lines the functions

17 are. So do not ask questions based on lines.

18

19 Make sure that you only fuzz an existing function. You will know that a

20 functions exists when the rag_tool returns to you its signature and body.

21 """

22

23 static: str = dspy.InputField(

24 desc=""" Output of static analysis tools for the project. If you find it

25 helpful, write your harness so that it leverages some of the potential

26 vulnerabilities described below. """

27)

28 new_harness: str = dspy.OutputField(

29 desc=""" C code for a libFuzzer-compatible harness. Output only the C

30 code, **DO NOT format it in a markdown code cell with backticks**, so

31 that it will be ready for compilation.

32

33 <important>

34

35 Add **all** the necessary includes, either project-specific or standard

68

36 libraries like <string.h>, <stdint.h> and <stdlib.h>. Also include any

37 header files that are part of the project and are probably useful. Most

38 projects have a header file with the same name as the project at the

39 root.

40

41 **The function to be fuzzed absolutely must be part of the source

42 code**, do not write a harness for your own functions or speculate about

43 existing ones. You must be sure that the function that is fuzzed exists

44 in the source code. Use your rag tool to query the source code.

45

46 Do not try to fuzz functions of the project that are static, since they

47 are only visible in the file that they were declared. Choose other

48 user-facing functions instead.

49

50 </important>

51

52 **Do not truncate the input to a smaller size that the original**,

53 e.g. for avoiding large stack usage or to avoid excessive buffers. Opt

54 to using the heap when possible to increase the chance of exposing

55 memory errors of the library, e.g. mmap instead of declaring

56 buf[1024]. Any edge cases should be handled by the library itself, not

57 the harness. On the other hand, do not write code that will most

58 probably crash irregardless of the library under test. The point is for

59 a function of the library under test to crash, not the harness

60 itself. Use and take advantage of any custom structs that the library

61 declares.

62

63 Do not copy function declarations inside the harness. The harness will

64 be compiled in the root directory of the project. """

65)

66

67

68 class FixHarness(dspy.Signature):

69 """

70 You are an experienced C/C++ security testing engineer. Given a

71 libFuzzer-compatible harness that fails to compile and its compilation

72 errors, rewrite it so that it compiles successfully. Analyze the compilation

73 errors carefully and find the root causes. Add any missing #includes like

74 <string.h>, <stdint.h> and <stdlib.h> and #define required macros or

75 constants in the fuzz target. If needed, re-declare functions or struct

76 types. Add verbose comments to explain what you changed and why.

77 """

78

69

79 old_harness: str = dspy.InputField(desc="The harness to be fixed.")

80 error: str = dspy.InputField(desc="The compilaton error of the harness.")

81 new_harness: str = dspy.OutputField(

82 desc="""The newly created harness with the necessary modifications for

83 correct compilation."""

84)

85

86

87 class ImproveHarness(dspy.Signature):

88 f"""

89 You are an experienced C/C++ security testing engineer. Given a

90 libFuzzer-compatible harness that does not find any bug/does not crash (even

91 after running for {Config.EXECUTION_TIMEOUT} seconds) or has memory leaks

92 (generates leak files), you are called to rewrite it and improve it so that

93 a bug can be found more easily and/or memory is managed correctly. Determine

94 the information you need to write an effective fuzz target and understand

95 constraints and edge cases in the source code to do it more

96 effectively. Reply only with the source code --- without backticks. Add

97 verbose comments to explain what you changed and why.

98 """

99

100 old_harness: str = dspy.InputField(

101 desc="The harness to be improved so it can find a bug more quickly."

102)

103 output: str = dspy.InputField(desc="The output of the harness' execution.")

104 new_harness: str = dspy.OutputField(

105 desc="""The newly created harness with the necessary modifications for

106 quicker bug-finding. If the provided harness has unnecessary input

107 limitations regarding size or format etc., remove them."""

108)

70

	Introduction
	Thesis Structure
	Summary of Contributions

	Background
	Fuzz Testing
	Motivation
	Methodology
	Challenges in Adoption

	Large Language Models
	State-of-the-art GPTs
	Prompting
	LLMs for Coding
	LLMs for Fuzzing

	Neurosymbolic AI

	OverHAuL's Design
	Installation and Usage
	Architecture
	Project Analysis
	Harness Creation
	Harness Evaluation

	OverHAuL Techniques
	Feedback Loop
	React Agents Triplet
	Codebase Oracle

	High-Level Algorithm
	Scope
	Implementation
	Development Tools
	Reproducibility

	Evaluation
	Experimental Benchmark
	Local Benchmarking

	Results
	RQ 1: Can OverHAuL generate working harnesses for unfuzzed C projects?
	RQ2: What characteristics do these harnesses have? Are they similar to man-made harnesses?
	RQ3: How do LLM usage patterns influence the generated harnesses?
	RQ4: How do different symbolic techniques affect the generated harnesses?

	Discussion
	Threats to Validity

	Related work
	Static and Dynamic Analysis-Powered Fuzzing
	Extra Resources Required
	Only Source Code Required
	Differences With OverHAuL

	Future Work
	Enhancements to Core Features
	Experimentation with Large Language Models and Data Representation
	Comprehensive Evaluation and Benchmarking
	Practical Deployment and Community Engagement

	Conclusion
	Bibliography
	Appendices
	Abandoned Techniques
	Sample Generated Harnesses
	clibs/buffer
	willemt/cbuffer
	dvhar/dateparse
	h2non/semver.c

	DSPy Custom Signatures

