SICP in Emacs

Konstantinos Chousos

June 7, 2023

Table of Contents

1 Getting the book 2
1.1 Obtaining theinfofile L. 2
2 Setting up Scheme 3
21 RacketinEmacs L 4
22 RacketinOrg-Babel 4
3 Result 5
4 Miscellaneous tips 6

Irecently began reading the notorious “Structure and Interpretation of Computer Programs”
[1], a.k.a. the Wizard book. I'm only on the first chapter, but I can already see its value and
why it gets recommended so much.

From Wikipedia:

Structure and Interpretation of Computer Programs (SICP) is a computer sci-
ence textbook by Massachusetts Institute of Technology professors Harold
Abelson and Gerald Jay Sussman with Julie Sussman. [...] It teaches funda-
mental principles of computer programming, including recursion, abstraction,
modularity, and programming language design and implementation. [...]
The book describes computer science concepts using Scheme, a dialect of
Lisp. It also uses a virtual register machine and assembler to implement Lisp
interpreters and compilers.

In this post, I aim to showcase my workflow for studying the book using Emacs [2]. Also,
I will provide any resources that helped me get going. To study SICP, we need two things:
The book and a Scheme implementation for the examples and exercises.

1 Getting the book

Lucky for us, the book is freely distributed from MIT itself. It is available in HTML and
PDF. But, there is also a third format option and it is the one we’re going to choose: the
Texinfo format.

From the official GNU site!:

Texinfo uses a single source file to produce output in a number of formats,
both online and printed (HTML, PDF, DVI, Info, DocBook, LaTeX, EPUB 3).
This means that instead of writing different documents for online information
and another for a printed manual, you need write only one document.

The Texinfo system is well-integrated with GNU Emacs.

That last line is what’s important here. info files are essentially manuals in plain text.
Emacs has a built-in mode for rendering such documents. By using the info format, we
can read SICP from inside Emacs.

1.1 Obtaining the info file

The info file can be retrieved in two methods:

1. By installing the sicp MELPA package?

2. By downloading the info file directly from neilvandyke.org and installing it.

1. Download the sicp.info.gz file (link) in your home directory.

2. Execute the following commands

1| $ sudo cp ~/sicp.info.gz /usr/local/share/info/

2 | $ sudo chmod 644 [fusr/local/share/info/sicp.info.gz

3 | $ sudo install-info /usr/local/share/info/sicp.info.gz
o Jusr/local/share/info/dir

Now SICP will be available through Emacs! To access it, you need to open Emacs, type
C-h i to go to the *info* top directory, type m to search and type sicp to find the book. If
everything went correctly, you should be greeted with something like this:

'https://www.gnu.org/software/texinfo/
*https://melpa.org/#/sicp

https://mitp-content-server.mit.edu/books/content/sectbyfn/books_pres_0/6515/sicp.zip/index.html
https://web.mit.edu/6.001/6.037/sicp.pdf
https://www.neilvandyke.org/sicp-texi/
https://www.neilvandyke.org/sicp-texi/sicp.info.gz
https://www.gnu.org/software/texinfo/
https://melpa.org/#/sicp

“info* - GNU Emacs at deskiop x
Fle Edi Opions Buffers Tools Info VirualEnvs Help
Next: UTF, Prev: (dir), Up: (dir)

[sicp)Top

Structure and Interpretation of Computer Programs

Second Edition

by Harold Abelson and Gerald Jay Sussman, with Julie Sussman

foreword by Alan J. Perlis

(C) 1996 Massachusetts Institute of Technology

Unofficial Texinfo Format version 2.neilvandyke4 (January 16, 2007)

* Menu:

* UTF Unofficial Texinfo Format

* Dedication Dedication

* Foreword Foreword

* Preface Preface to the Second Edition

* Preface Te Preface to the First Edition

* Acknowledgenents Acknowledgenents

* Chapter 1 Building Abstractions with Procedures
* Chapter 2 Building Abstractions with Data
* Chapter 3 Modularity, Objects, and State
* Chapter 4 Metalinguistic Abstraction

* Chapter § Computing with Register Machines
* References References

* Index Tndex

--- The Detailed Node Listing ---
Programming in Lisp
* 11 The Elements of Programning

1-2 Procedures and the Processes They Generate

Fornulating Abstractions with Higher-Order Procedures

The Elements of Programming

* 1-1-1 Expressions
*1-1-2 Naning and the Environment

*1-13 Evaluating Combinations

*1m1eg Conpound Procedures

* 115 The Substitution Model for Procedure Application
* 1106 Conditional Expressions and Predicates

*1-1-7 Exanple: Square Roots by Newton's Method

* 118 Procedures as Black-Box Abstractions

Procedures and the Processes They Generate

* 1-2-1 Linear Recursion and Iteration
*1-2-2 Tree Recursion
* 123 Orders of Growth
= Exponentiation
. " n:
D /8- *info* (sicp) Top €K Tp - e

Mark set

Figure 1: SICP’s table of contents in ‘info’ format, viewed from within Emacs

2 Setting up Scheme

SICP’s examples and exercises are all implemented in Scheme. Scheme is a Lisp dialect with
many implementations. SICP-uses-the MIT-Secheme-implementation Turns out GNU/MIT-
Scheme is not fully compatible with the code in SICP (source). Instead, we will use Racket.
Racket offers the SICP collection, a Racket #lang that makes it fully compatible with the
SICP code.

First, we need to install racket through our package manager. After that, the sicp collection
can be downloaded like this:

$ raco pkg install sicp

That’s it! Now, when we write a .rkt file that needs to be compatible with SICP all we
need to do is add #lang sicp at the top of the file>.

*when using the REPL, we need to first evaluate (require sicp) before evaluating anything else.

https://www.gnu.org/software/mit-scheme/
https://www.reddit.com/r/sicp/comments/mf0j95/comment/gsljkkw/?utm_source=share&utm_medium=web2x&context=3
https://racket-lang.org/
https://docs.racket-lang.org/sicp-manual/

2.1 Racket in Emacs

Personally, I recommend racket-mode for working with Racket in Emacs. Another popular
choice is geiser, but its geiser-racket module seems to be unmaintained*.

To install racket-mode using elpaca, add the following to your config file:

(use-package racket-mode
elpaca t)

2.2 Racket in Org-Babel

In case you choose to go the literate programming route (as I have) using Org-Mode, you
will need to enable support for racket in org-babel. To do this, use the emacs-ob-racket
package. Add the following to your config:

(use-package ob-racket
:elpaca (:type git :host github :repo "hasu/emacs-ob-racket"))

and then enable racket in your org-babel configuration.

(org-babel-do-load-languages
'org-babel-load-languages
"((emacs-lisp :tangle ./init.el . t)
(C.t)
(python . t)

(.l.“e.acket . 1)

To be able to use the sicp package in org-babel code blocks, you need to add :lang sicp in
the Org block, like so:

#+begin_src racket :lang sicp
"Hello World!"
#+end_src

Instead of adding that to every code block, you can add #+property: header-args :lang sicp

to the start of your Org file. This-will be-applied-to-all code blocks-in-the file; so-make
sure-you-include-onlyracketeode bloeks This can be mitigated by specifying that these

header-args are to be applied only to racket blocks, like so: #+property: header-args:racket
:lang sicp.

*https://lists.nongnu.org/archive/html/geiser-users/2022-06/msg00004.html

https://github.com/greghendershott/racket-mode
https://github.com/emacsmirror/geiser
https://github.com/progfolio/elpaca/
https://github.com/hasu/emacs-ob-racket
https://lists.nongnu.org/archive/html/geiser-users/2022-06/msg00004.html

3 Result

After all this work, now we can finally start reading SICP. My so-far workflow consists
of the book in the left window, a racket REPL in the top-right corner and my Org-Roam
notes in the bottom-right corner.

of a 'm
to Fals

Notice that ‘and' and “or' are special forms, not procedures, because S0 (and 6 b) (< b 2 B
the subexpressions are not necessarily all evaluated. “Not' is an b

ordinary procedure. a)

As an exanple of how these are used, the condition that a nusber x > Ceond (-3 4))
be in the range 5 < x < 10 nay be expressed as Cracerm
else 2

(and (> x 5) (< x 10))

As another exanple, we can define a predicate to test whether one
nunber is greater than or equal to another as

(define (>= x y)
Cor (> y) Gy

or alternatively as

(define (>= x y)
(not (< x y)))
Exercise 1.1: Below is a sequence of expressions. What is the
result printed by the interpreter in response to each expression?
Assune that the sequence is to be evaluated in the order in which
it is presented. [U “Racket REPL <o~ R ot @ e
title: Abe

Ison, Rarold and Sussman, Gerald Jay and Sussman, Julis 1+ Structure and Interpretation of Computer Programs

0

° 115
(+534) Ynapyouv 600 TpdnoL yia var yiver evaluate ja éxgpaon:
-91
62)

((*24)(-46))
(define a 3)
(define b (+ a 1))

(+ab(*an)

(=ab)

(if (and (> b 2) (< b (* a b)) >)
b (2)
a)

)
(eond ((- 2 4) 6) "
(b4 (67a) .
(e1:e 25))

1

b s an

Tofo 531 132: 28 | Sraindumo | Gitiinast

Figure 2: My SICP studying workflow

When it comes to the exercises, I use Org-Mode and Org-Babel to write the solutions in
a literate programming style. The file is divided by chapter. Each exercise is included
followed by its (hopefully correct) solution. (So far) I use a single .org file and export it to
PDF. Also, all of the code blocks are exported to a .rkt file, with links to the corresponding
position in the org file. All of these files can be found at this repo.

https://github.com/kchousos/SICP-solutions

G E5it2Ca000
"3

Rosults

Figure 3: My SICP solutions in literate programming

4 Miscellaneous tips

« Update 07/06/2023: As u/jherrlin on Reddit pointed out, the fact that SICP is in text

format gives us the ability to leverage Emacs’ built-in bookmarks feature. When
you arrive to the end of your study session, just type C-x r m and a bookmark will
be placed on the current line. You can search your bookmarks with C-x r b or list
them with C-x r 1.

My tip is to name the bookmark the same each time (e.g. sicp). That way, when you
re-create it in a later position, the old bookmark is discarded automatically. Also, if
you run Emacs in daemon mode, I suggest to run M-x bookmark-save after adding a
bookmark, to make sure it has been saved.

References

[1]

H. Abelson, G. J. Sussman, and J. Sussman, Structure and Interpretation of Computer
Programs (Electrical Engineering and Computer Science Series), 2. ed., 7. [pr.] Cam-
bridge, Mass.: MIT Press [u.a.], 2002, 657 pp., ISBN: 978-0-07-000484-9.

R. M. Stallman, “EMACS the extensible, customizable self-documenting display editor,”
ACM SIGPLAN Notices, vol. 16, no. 6, pp. 147-156, Jun. 1981, 1ssN: 0362-1340, 1558-
1160. por: 10.1145/872730.806466. [Online]. Available: https://dl.acm.org/doi/10.1145
/872730.806466.

https://www.reddit.com/r/emacs/comments/143cyw3/comment/jna8ev2/?utm_source=share&utm_medium=web2x&context=3
https://doi.org/10.1145/872730.806466
https://dl.acm.org/doi/10.1145/872730.806466
https://dl.acm.org/doi/10.1145/872730.806466

	Getting the book
	Obtaining the file

	Setting up Scheme
	Racket in Emacs
	Racket in Org-Babel

	Result
	Miscellaneous tips

